Agricultural land-use intensity and its effects on small mammals in the central region of Argentina

Abstract

Agriculture intensification is one of the main threats to biodiversity in agricultural systems. The effectiveness of conservation strategies in these systems depends mainly on the compromise between biodiversity conservation and agricultural land use. The aim of this study was to assess the effect of land-use intensity, characteristics of linear habitats (field borders) and their surrounding fields (landscape) on small mammal richness and abundance in agricultural systems of Argentina. In autumn 2009, we performed a removal sampling in 60 traplines located in the field borders of high or low land-use intensity regions. In traplines under high land-use intensity we found seven species while under low land-use intensity we found ten. Characteristic species of grasslands and woodlands such as Monodelphis dimidiata, Thylamys pallidior, Necromys lasiurus and Graomys griseoflavus were only captured in traplines under low land-use intensity. Higher numbers of Calomys musculinus species (habitat generalist) were observed under high land-use intensity while Akodon azarae and Oxymycterus rufus species, known as habitat specialists, were more frequently found in the low land-use intensity region. Border width and height, as well as land use of both sides of the border, were major variables for explaining small mammal abundances. Our results suggest that conservation of wide field borders with characteristics similar to those of natural habitats would be crucial for sustainable management of Pampean agricultural systems which hold high richness and abundance of small mammal species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Andreo V, Lima MA, Provensal MC, Priotto JW, Polop JJ (2009) Population dynamics of two rodent species in agro-ecosystems of central Argentina: intra-specific competition, land-use, and climate effects. Popul Ecol 51:297–306. doi:10.1007/s10144-008-0123-3

    Article  Google Scholar 

  2. Baldi G, Guerschman JP, Paruelo JM (2006) Characterizing fragmentation in temperate South America grasslands. Agric Ecosyst Environ 116:197–208. doi:10.1016/j.agee.2006.02.009

    Article  Google Scholar 

  3. Baraibar B, Westerman PR, Carrión E, Recasens J (2009) Effects of tillage and irrigation in cereal fields on weed seed removal by seed predators. J Appl Ecol 46:380–387. doi:10.1111/j.1365-2664.2009.01614.x

    Article  Google Scholar 

  4. Bilenca DN, Kravetz FO (1995) Patrones de abundancia relativa en ensamble de pequeños roedores, de la región pampeana. Ecol Austral 5:21–30

    Google Scholar 

  5. Bilenca DN, González-Fischer CM, Teta P, Zamero M (2007) Agricultural intensification and small mammal assemblages in agroecosystems of the Rolling Pampas, central Argentina. Agric Ecosyst Environ 121:371–375. doi:10.1016/j.agee.2006.11.014

    Article  Google Scholar 

  6. Brown A, Martinez Ortiz U, Acerbi M, Corcuera J (2006) La situación ambiental Argentina 2005. Vida Silvestre Argentina, Buenos Aires, Argentina

    Google Scholar 

  7. Burnham KP, Anderson DR (2002) Model Selection and multimodel inference. A practical information-theoretic approach, Secondth edn. Springer, New York

    Google Scholar 

  8. Busch M, Miño MH, Dadon JR, Hodara K (2000) Habitat selection by Calomys musculinus (Muridae, Sigmodontinae) in crop areas of the pampean region, Argentina. Ecol Austral 10:15–26

    Google Scholar 

  9. Carey AB, Kershner J, Biswell B, Dominguez de Toledo AL (1999) Ecological scale and forest development: squirrels, dietary fungi, and vascular plants in managed and unmanaged forest. Wildl Monogr 142:1–71

    Google Scholar 

  10. Cavia R, Gómez Villafañe IE, Cittadino EA, Bilenca DN, Miño MH, Busch M (2005) Effects of cereal harvest on abundance and spatial distribution of the rodent Akodon azarae in central Argentina. Agric Ecosyst Environ 107:95–99

    Article  Google Scholar 

  11. Chuvieco E (1996) Fundamentos de teledetección espacial, vol II. Ediciones RIALP S.A, Alcalá, Madrid

    Google Scholar 

  12. Cisneros JM, Cantero A, Degioanni A, Becerra VH, Zubrzycki MA (2008) Producción, uso y manejo de las tierras. In: de Prada JD, Penna J (eds) Percepción económica y visión de los productores agropecuarios de los problemas ambientales en el sur de Córdoba. Argentina. Publicaciones Nacionales INTA, Buenos Aires, pp 31–34

    Google Scholar 

  13. Coda JA, Gomez MD, Steinmann AR, Priotto JW (2014) The effects of agricultural management on the reproductive activity of female rodents in Argentina. Basic Appl Ecol 15:407–415. doi:10.1016/j.baae.2014.06.005

    Article  Google Scholar 

  14. Coda JA, Gomez MD, Steinmann AR, Priotto JW (2015) Small mammals in farmlands of Argentina: responses to organic and conventional farming. Agric Ecosyst Environ 211:17–23. doi:10.1016/j.agee.2015.05.007

    Article  Google Scholar 

  15. Concepción ED, Díaz M, Baquero RA (2008) Effects of landscape complexity on the ecological effectiveness of agri-environment schemes. Landsc Ecol 23:135–148. doi:10.1007/s10980-007-9150-2

    Article  Google Scholar 

  16. Didham RK (2010) The ecological consequences of habitat fragmentation. Encyclopedia of Life Sciences. Wiley, Ltd, Chichester, pp 1–11

    Google Scholar 

  17. Donald PF, Gree RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc R Soc B 268:25–29. doi:10.1098/rspb.2000.1325

    Article  Google Scholar 

  18. Elkinton JS, Healy WM, Buonaccorsi JP, Boettner GH, Hazzard AM, Smith HR, Liebhold AM (1996) Interactions among gypsy moths, white-footed mice, and acorns. Ecology 77:2332–2342

    Article  Google Scholar 

  19. Fahrig L, Baudry J, Brotons LL, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin J-L (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–12. doi:10.1111/j.1461-0248.2010.01559.x

    Article  PubMed  Google Scholar 

  20. Filippi-Codaccioni O, Devictor V, Bas Y, Clobert J, Julliard R (2010) Specialist response to proportion of arable land and pesticide input in agricultural landscapes. Biol Conserv 143:883–890. doi:10.1016/j.biocon.2009.12.035

    Article  Google Scholar 

  21. Firbank LG, Petit S, Smart S, Blain A, Fuller RJ (2008) Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Philos Trans R Soc B 363:777–87. doi:10.1098/rstb.2007.2183

    Article  Google Scholar 

  22. Fischer C, Schröder B (2014) Predicting spatial and temporal habitat use of rodents in a highly intensive agricultural area. Agric Ecosyst Environ 189:145–153. doi:10.1016/j.agee.2014.03.039

    Article  Google Scholar 

  23. Fischer C, Thies C, Tscharntke T (2011) Small mammals in agricultural landscapes: opposing responses to farming practices and landscape complexity. Biol Conserv 144:1130–1136. doi:10.1016/j.biocon.2010.12.032

    Article  Google Scholar 

  24. Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772

    CAS  Article  PubMed  Google Scholar 

  25. Fraschina J, León VA, Busch M (2012) Long-term variations in rodent abundance in a rural landscape of the Pampas, Argentina. Ecol Res 27:191–202. doi:10.1007/s11284-011-0888-2

    Article  Google Scholar 

  26. Fuentes-Montemayor E, Goulson D, Cavin L, Wallace JM, Park KJ (2012) Factors influencing moth assemblages in woodland fragments on farmland: implications for woodland management and creation schemes. Biol Conserv 153:265–275. doi:10.1016/j.biocon.2012.04.019

    Article  Google Scholar 

  27. Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, Liira J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Pärt T, Bretagnolle V, Plantegenest M, Clement LW, Dennis C, Palmer C, Oñate JJ, Guerrero I, Hawro V, Aavik T, Thies C, Flohre A, Hänke S, Fischer C, Goedhart PW, Inchausti P (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105. doi:10.1016/j.baae.2009.12.001

    CAS  Article  Google Scholar 

  28. Gomez MD, Sommaro L, Steinmann AR, Chiappero M, Priotto JW (2011) Movement distances of two species of sympatric rodents in linear habitats of Central Argentine agro-ecosystems. Mamm Biol 76:58–63. doi:10.1016/j.mambio.2010.02.001

    Google Scholar 

  29. González Fischer CM, Baldi G, Codesido M, Bilenca DN (2012) Seasonal variations in small mammal-landscape associations in temperate agroecosystems: a study case in Buenos Aires province, central Argentina. Mammalia 76:399–406. doi:10.1515/mammalia-2011-0113

    Google Scholar 

  30. Hole DG, Perkins AJ, Wilson J, Alexander I, Grice P, Evans A (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130. doi:10.1016/j.biocon.2004.07.018

    Article  Google Scholar 

  31. Ims RA (1995) Movement patterns related to spatial structures. In: Hansson L, Fahrig L, Merriam G (eds) Mosaic landscapes and ecological processes. Chap-Man & Hall, London, pp 85–109

    Chapter  Google Scholar 

  32. Levins R (1968) Evolution in changing environment. Princenton University Press, Princenton, New Jersey

    Google Scholar 

  33. Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island press, Washington

    Google Scholar 

  34. Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between—and reconciliation of—“predictive” and “explanatory” models. Biodivers Conserv 9:655–671

    Article  Google Scholar 

  35. Markham BL, Barker JL (1986) Landsat MSS and TM post-calibration dynamic rangers, exoatmospheric reflectance and at-satellite temperatures. EOSAT Landsat Tech Notes., pp 3–8

    Google Scholar 

  36. Martínez JJ, Millien V, Simone I, Priotto JW (2014) Ecological preference between generalist and specialist rodents: spatial and environmental correlates of phenotypic variation. Biol J Linn Soc 112:180–203. doi:10.1111/bij.12268

    Article  Google Scholar 

  37. Maser C, Trappe JM, Nussbaum RA (1978) Fungal-small mammal interrelationships with emphasis on Oregon coniferous forest. Ecology 59:799–809

    Article  Google Scholar 

  38. Medan D, Torretta JP, Hodara K, Fuente EB, Montaldo NH (2011) Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodivers Conserv 20:3077–3100. doi:10.1007/s10531-011-0118-9

    Article  Google Scholar 

  39. Michel N, Burel FG, Butet A (2006) How does landscape use influence small mammal diversity, abundance and biomass in hedgerow networks of farming landscapes? Acta Oecol 30:11–20. doi:10.1016/j.actao.2005.12.006

    Article  Google Scholar 

  40. Michel N, Burel FG, Legendre P, Butet A (2007) Role of habitat and landscape in structuring small mammal assemblages in hedgerow networks of contrasted farming landscapes in Brittany, France. Landsc Ecol 22:1241–1253. doi:10.1007/s10980-007-9103-9

    Article  Google Scholar 

  41. Millán de la Peña N, Butet A, Delettre Y, Paillat G, Morant P, Le Du L, Burel FG (2003) Response of the small mammal community to changes in western French agricultural landscapes. Landsc Ecol 18:265–278

    Article  Google Scholar 

  42. Mora MS, Mapelli FJ, Gaggiotti OE, Kittlein MJ, Lessa EP (2010) Dispersal and population structure at different spatial scales in the subterranean rodent Ctenomys australis. BMC Genet 11:1–14. doi:10.1186/1471-2156-11-9

    Article  Google Scholar 

  43. Pardiñas UFJ, Moreira GJ, García-Esponda CM, de Santis LJM (2000) Deterioro ambiental y micromamíferos durante el Holoceno en el nordeste de la estepa patagónica (Argentina). Rev Chil Hist Nat 73:9–21

    Article  Google Scholar 

  44. Pardiñas UFJ, Cirignoli S, Podesta DH (2001) Nuevos micromamíferos registrados en la Península de Valdés (Provincia de Chubut, Argentina). Neotropica 47:101–102

    Google Scholar 

  45. Pardiñas UFJ, Abba AM, Merino ML (2004) Micromamiferos (Didelphimorphia y Rodentia) del sudoeste de la Provincia de Buenos Aires (Argentina): Taxonomía y distribución. Mastozoología Neotrop 11:211–232

    Google Scholar 

  46. Pimm SL, Raven PH (2000) Extinction by numbers. Nature 403:843–845

    CAS  Article  PubMed  Google Scholar 

  47. Poggio SL, Chaneton EJ, Ghersa CM (2010) Landscape complexity differentially affects alpha, beta, and gamma diversities of plants occurring in fencerows and crop fields. Biol Conserv 143:2477–2486. doi:10.1016/j.biocon.2010.06.014

    Article  Google Scholar 

  48. Polop JJ (1996) Análisis de las respuestas adaptativas del género Calomys. Universidad Nacional de Río Cuarto. Córdoba, Argentina

    Google Scholar 

  49. Priotto J, Steinmann A, Polop J (2002) Factor affecting home range size andoverlap in Calomys venustus (Muridae: Sigmodontinae) in Argentine agroecosystems. Mamm Biol 67:97–104

  50. R Development Core Team (2013) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, http://www.R-project.org

    Google Scholar 

  51. Salamolard M, Butet A, Leroux A, Bretagnolle V (2000) Responses of an avian predator to variations in prey density at a temperate latitude. Ecology 81:2428–2441

    Article  Google Scholar 

  52. Schott JR, Volchok WJ (1985) Thematic Mapper thermal infrared calibration. Photogramm Eng Remote Sensing 51:1351–1357

    Google Scholar 

  53. Sikes RS, Gannon WL (2011) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 92:235–253. doi:10.1644/10-MAMM-F-355.1

    Article  Google Scholar 

  54. Simone I, Cagnacci F, Provensal MC, Polop JJ (2010) Environmental determinants of the small mammal assemblage in an agroecosystem of central Argentina: the role of Calomys musculinus. Mamm Biol 75:496–509

    Google Scholar 

  55. Simone I, Provensal MC, Polop JJ (2012) Habitat use by corn mice (Calomys musculinus) in crop field borders of agricultural ecosystems in Argentina. Wildl Res 39:112–122

    Article  Google Scholar 

  56. Sirami C, Brotons L, Martin J-L (2007) Vegetation and songbird response to land abandonment: from landscape to census plot. Divers Distrib 13:42–52. doi:10.1111/j.1472-4642.2006.00297.x

    Google Scholar 

  57. Sommaro L, Gomez MD, Bonatto F, Steinmann AR, Chiappero M, Priotto JW (2010) Corn mice (Calomys musculinus) movement in linear habitats of agricultural ecosystems. J Mammal 91:668–673

    Article  Google Scholar 

  58. Tucker CJ, Fung IY, Keeling CD, Gammon RH (1986) Relationship between atmospheric CO2 variations and a satellite-deriver vegetation index. Nature 319:195–199

    Article  Google Scholar 

  59. Wukelic GE, Gibbons DE, Martucci LM, Foote HP (1989) Radiometric calibration of Landsat Thematic Mapper thermal band. Remote Sens Environ 28:339–347. doi:10.1016/0034-4257(89)90125-9

    Article  Google Scholar 

  60. Yletyinen S, Norrdahl K (2008) Habitat use of field voles (Microtus agrestis) in wide and narrow buffer zones. Agric Ecosyst Environ 123:194–200. doi:10.1016/j.agee.2007.06.002

    Article  Google Scholar 

Download references

Acknowledgments

We thank Marina Chiappero, Lucía Sommaro, Emmanuel Zufiaurre and Noelia Vera for field work assistance and the Associate Editor and an anonymous reviewer for helpful comments on the manuscript. This research was made possible by grants of the Fondo para la Investigación Científica y Tecnológica (FONCyT), Consejo Nacional de Investigación Científica y Tecnológica (CONICET) and Universidad Nacional de Río Cuarto.

Compliance with ethical standards

Ethical approval

All procedures performed in studies involving animals were in accordance with the current Argentinean Laws (National Law 14346, www.sarem.org).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare they have no conflict of interests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to María Daniela Gomez.

Additional information

Communicated by: Thales Renato Ochotorena de Freitas

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gomez, M.D., Coda, J., Simone, I. et al. Agricultural land-use intensity and its effects on small mammals in the central region of Argentina. Mamm Res 60, 415–423 (2015). https://doi.org/10.1007/s13364-015-0245-x

Download citation

Keywords

  • Field borders
  • High land-use intensity
  • Low land-use intensity
  • Population abundance
  • Species richness