Advertisement

Acta Theriologica

, Volume 59, Issue 4, pp 583–587 | Cite as

Effects of rodents on plant cover, soil hardness, and soil nutrient content: a case study on tuco-tucos (Ctenomys minutus)

  • Daniel GalianoEmail author
  • Bruno B. Kubiak
  • Gerhard E. Overbeck
  • Thales R. O. de Freitas
Short Communication

Abstract

We analyzed the effects of tuco-tucos (Ctenomys minutus, Ctenomyidae) on plant cover, plant biomass, soil hardness, soil pH, and variables related to nutrient disposition (P, K, Mg, and Ca), using data from three areas in the South Brazilian coastal plain. In each area, samples were taken from sites with and without C. minutus and results are presented in a concatenate way. Our results show that the presence of C. minutus modifies total plant biomass, grass cover, bare soil, soil hardness, soil pH, and nutrient content. Soils horizons at the depths of 10 and 20 cm are significantly softer in sites with C. minutus and phosphorus and potassium had higher concentrations. The content of magnesium and calcium were not affected. Soil pH was significantly lower where tuco-tucos occurred. Altogether, our results show that these animals may have a significant effect on vegetation composition and dynamics as well as on soil properties.

Keywords

Animal interactions Coastal grasslands Subterranean mammals Southern Brazil 

Notes

Acknowledgments

We are grateful to all colleagues from the Laboratório de Citogenética e Evolução for support at various stages of this research. DG and BBK received a student fellowship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). TROF received research support from CNPq, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), and Fundação de Amparo a Pesquisa do Rio Grande do Sul (FAPERGS). We thank Emerson M. Vieira and three anonymous reviewers for all the comments and suggestions which greatly improved the manuscript.

References

  1. Abaturov BD (1972) The role of burrowing animals in the transport of mineral substances in the soil. Pedobiologia 12:261–266Google Scholar
  2. Albanese S, Rodríguez D, Dacar MA, Ojeda RA (2010) Use of resources by the subterranean rodent Ctenomys mendocinus (Rodentia, Ctenomyidae), in the lowland Monte desert, Argentina. J Arid Environ 74:458–463. doi: 10.1016/j.jaridenv.2009.10.011 CrossRefGoogle Scholar
  3. Andersen DC (1987) Belowground herbivory in natural communities: a review emphasizing fossorial animals. Q Rev Biol 62:261–286CrossRefGoogle Scholar
  4. Borghi CE, Giannoni SM, Martínez-Rica JP (1990) Soil removed by voles of the genus Pitymys species in the Spanish Pyrenees. Pirineos 136:3–18CrossRefGoogle Scholar
  5. Busch C, Antinuchi CD, Valle CJ, Kittle MJ, Malizia AI, Vassalo AI, Zenuto R (2000) Population ecology of subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life underground: the biology of subterranean rodents. University of Chicago Press, Chicago, IL, pp 183–226Google Scholar
  6. Cameron GN (2000) Community ecology of subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life underground: the biology of subterranean rodents. University of Chicago Press, Chicago, IL, pp 227–256Google Scholar
  7. Campos CM, Giannoni SM, Borghi CE (2001) Changes in Monte desert plant communities induced by a subterranean mammal. J Arid Environ 47:339–345. doi: 10.1006/jare.2000.0724 CrossRefGoogle Scholar
  8. Contreras LC, Gutiérrez JR (1991) Effect of the subterranean herbivorous rodent Spalacopus cyanus on herbaceous vegetation in arid coastal Chile. Oecologia (Berlin) 87:106–109CrossRefGoogle Scholar
  9. Cox GW, Roig V (1986) Argentinian mima mounds occupied by ctenomyid rodents. J Mammal 67:428–432CrossRefGoogle Scholar
  10. Embrapa (Empresa brasileira de Pesquisa Agropecuária) (1997). Manual de Métodos de Análise de Solo. Rio de Janeiro, 212pGoogle Scholar
  11. Freitas TRO (1995) Geographic distribution and conservation of four species of the genus Ctenomys in Southern Brazil. Stud Neotrop Fauna Environ 30:53–59CrossRefGoogle Scholar
  12. Freygang CC, Marinho JR, Freitas TRO (2004) New karyotypes and some considerations of Ctenomys minutus (Rodentia: Ctenomyidae) on the coastal plain of the Brazilian State of Rio Grande do Sul. Genetica 121:125–132. doi: 10.1023/B:GENE.0000040376.56321.be PubMedCrossRefGoogle Scholar
  13. Gastal MLA (1994) Sistemas de túneis e área de vida de Ctenomys minutus Nehring, 1887 (Rodentia, Caviomorpha, Ctenomyidae). Iheringia Sér Zool 77:35–44Google Scholar
  14. Grant WE, Mc Bryer JF (1981) Effects of mound formation by pocket gophers (Geomys bursarius) on old-field ecosystems. Pedobiologia 22:21–28Google Scholar
  15. Hagenah N, Bennett NC (2013) Mole rats act as ecosystem engineers within a biodiversity hotspot, the Cape Fynbos. J Zool 289:19–26. doi: 10.1111/j.1469-7998.2012.00958.x CrossRefGoogle Scholar
  16. Hesp PA, Giannini PCF, Martinho TC, Da Silva GM, Neto NEA (2009) The Holocene Barrier Systems of the Santa Catarina Coast, Southern Brazil. In: Dillenburg SR, Hesp PA (eds) Geology and geomorphology of Holocene Coastal Barriers of Brazil. Springer, Berlin, pp 92–133Google Scholar
  17. Hole FD (1981) Effects of animals on soils. Geoderma 25:75–112CrossRefGoogle Scholar
  18. Huntly N, Reichman OJ (1994) Effects of subterranean mammalian herbivores on vegetation. J Mammal 75:852–859CrossRefGoogle Scholar
  19. Inouye RS, Huntly NJ, Tilman D, Tester JR (1987) Pocket gophers (Geomys bursarius), vegetation, and soil nitrogen along a successional sere in east central Minnesota. Oecologia (Berlin) 72:178–184CrossRefGoogle Scholar
  20. Kerley GIH, Whitford WG, Kay FR (2004) Effects of pocket gophers on desert soils and vegetation. J Arid Environ 58:155–166. doi: 10.1016/j.jaridenv.2003.08.001 CrossRefGoogle Scholar
  21. Lacey EA, Patton JL, Cameron GN (2000) Life underground: the biology of subterranean rodents. The University of Chicago Press, Chicago, IllinoisGoogle Scholar
  22. Lara N, Sassi P, Borghi CE (2007). Effect of herbivory and disturbances by tuco-tucos (Ctenomys mendocinus) on a plant community in the southern Puna Desert. Arct Antarct Alp Res 39: 110–116. doi:  10.1657/1523-0430(2007)39[110:EOHADB]2.0.CO;2
  23. Malizia AI, Kittlein MJ, Busch C (2000) Influence of the subterranean herbivorous rodent Ctenomys talarum on vegetation and soil. Z Saugetierkd 65:172–182Google Scholar
  24. Mehlich A (1953) Determination of P, Ca, Mg, K, Na, and NH. North Carolina Soil Test Division (Mimeo), Raleigh, NCGoogle Scholar
  25. Mielke HW (1977) Mound building by pocket gophers (Geomyidae): their impact on soils and vegetation in North America. J Biogeogr 4:171–180CrossRefGoogle Scholar
  26. Mora M, Olivares AI, Vassallo AI (2003) Size, shape and structural versatility of the skull of the subterranean rodent Ctenomys (Rodentia, Caviomorpha): functional and morphological analysis. Biol J Linn Soc 78:85–96. doi: 10.1046/j.1095-8312.2003.00133.x CrossRefGoogle Scholar
  27. Nimer E (1977). Clima, in: IBGE - Geografia do Brasil, Região Sul. SERGRAF-IBGE, Rio de Janeiro, pp 35–79Google Scholar
  28. Oksanen J, Kindt R, Legendre P, O’Hara RB (2012). Vegan: community ecology package version 2.0–5. http://cran.r-project.org
  29. Overbeck GE, Müller SC, Fidelis AT, Pfadenhauer J, Pillar VD, Blanco CC, Boldrini II, Both R, Forneck ED (2007) Brazil’s neglected biome: the South Brazilian Campos. Perspect Plant Ecol Evol Syst 9:101–116CrossRefGoogle Scholar
  30. R Development Core Team (2012). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  31. Reichman OJ (2007) The influence of pocket gophers on the biotic and abiotic environment. In: Begal S, Burda H, Schleich CE (eds) Subterranean rodents: news from underground. Springer-Verlag Berlin, Heidelberg, pp 271–286CrossRefGoogle Scholar
  32. Reichman OJ, Seabloom EW (2002) The role of pocket gophers as subterranean ecosystem engineers. Trends Ecol Evol 17:44–49. doi: 10.1016/S0169-5347(01)02329-1 CrossRefGoogle Scholar
  33. Reichmand OJ, Smith S (1985) Impact of pocket gopher burrows on overlying vegetation. J Mammal 66:720–725CrossRefGoogle Scholar
  34. Reichmand OJ, Smith S (1990) Burrows and burrowing behavior by mammals. In: Genoways HH (ed) Current mammalogy. Plenum press, New York and London, pp 197–244Google Scholar
  35. Reig OA, Busch C, Contreras MO, Ortells JR (1990) An overview of evolution, systematics, population and speciation in Ctenomys. In: Nevo E, Reig OA (eds) Evolution of subterranean mammals at the organismal and molecular levels. Wiley-Liss, New York, pp 71–96Google Scholar
  36. Schauer J (1987) Remarks on the construction of burrows of Ellobius talpinus, Myospalax aspalax and Ochotona daurica in Mongolia and their effect on the soil. Folia Zool 36:319–326Google Scholar
  37. Šklíba J, Šumbera R, Chitaukali WN, Burda H (2009) Home-range dynamics in a solitary subterranean rodent. Ethol 115:217–226. doi: 10.1111/j.1439-0310.2008.01604.x CrossRefGoogle Scholar
  38. Spencer SR, Cameron GN, Eshelman BD, Cooper LC, Williams LR (1985) Influence of pocket gopher mound on a Texas coastal prairie. Oecologia (Berlin) 66:111–115CrossRefGoogle Scholar
  39. Stolf R (1991) Teoria e teste experimental de fórmulas de transformação dos dados de penetrômetro de impacto em resistência do solo. Rev Bras Cienc Solo 15:229–235Google Scholar
  40. Tomazelli LJ, Dillenburg SR, Villwock JA (2000) Late quaternary geological history of Rio Grande do Sul coastal plain, southern Brazil. Rev Bras Geociências 30:474–476Google Scholar
  41. Tort J, Campos CM, Borghi CE (2004) Herbivory by tuco-tucos (Ctenomys mendocinus) on shrubs in the upper limit of the Monte desert (Argentina). Mammalia 68:15–21. doi: 10.1515/mamm.2004.002 CrossRefGoogle Scholar
  42. Underwood AJ (1998) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  43. Vieira E, Rangel SS (1998) Planície costeira do Rio Grande do Sul: geografia física, vegetação e dinâmica sócio-demográfica. Sagra, Porto AlegreGoogle Scholar
  44. Woods CA, Kilpatrick CW (2005) Infra order Hystricognathi Brandt, 1855. In: Wilson DE, Reeder DM (eds) Mammal species of the world. Johns Hopkins University Press, Baltimore, pp 1538–1600Google Scholar
  45. Zar JH (1999) Biostatistical analysis. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2014

Authors and Affiliations

  • Daniel Galiano
    • 1
    Email author
  • Bruno B. Kubiak
    • 1
  • Gerhard E. Overbeck
    • 2
  • Thales R. O. de Freitas
    • 3
  1. 1.Programa de Pós-Graduação em Biologia AnimalUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Departamento de BotânicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Departamento de GenéticaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations