Acta Theriologica

, Volume 59, Issue 2, pp 289–298 | Cite as

Using remote sensing data to model European wild rabbit (Oryctolagus cuniculus) occurrence in a highly fragmented landscape in northwestern Spain

Original Paper

Abstract

We model the occurrence of European wild rabbit in fragmented environments in a mountainous area of northwestern Spain (Gerês–Xurés Biosphere Reserve). We carried out a field survey by sampling the presence/absence of pellets in 237 plots (100 × 100 m) selected at random below an altitude of 800 m. For modelling purposes, we considered eight predictors related to vegetation, topography, human influence and heterogeneity. We obtained vegetation and ecological predictors from land use/land cover maps derived from Landsat Enhanced Thematic Mapper Plus images (acquired at the same time as the field data) and calculated vegetation indices by using a supervised classification method. We obtained topographical predictors from a Global Digital Elevation Model (GDEM) and used a generalized linear model to describe the occurrence of the European wild rabbit. The overall accuracy of the Landsat-derived map in Baixa Limia was 87.51 %, and the kappa coefficient was 0.85. The most parsimonious model included “grassland and crops”, “mean slope”, “distance to roads”, “urban settlements” and “ecotone scrubland-forest”. Five predictors were consequential, three of them with a positive sign for the presence of the species (scrub, urban settlements and ecotone scrubland-forest) and two with a negative sign (mean slope and distance to roads). The information on habitat requirements of European wild rabbit in the area provides a good framework for determining the habitat requirements of this keystone species in mountainous ecosystems in northwestern Iberian Peninsula.

Keywords

European wild rabbit Iberian Peninsula Modelling Occurrence Oryctolagus cuniculus Remote sensing 

References

  1. Anderson DR, Burnham KP, Thompson WL (2000) Null hypothesis testing: problems, prevalence, and an alternative. J Wildlife Manag 64:912–923. doi:10.2307/3803199 CrossRefGoogle Scholar
  2. Angulo E (2003) Factores que afectan a la distribución de Conejo en Andalucía. PhD Thesis, Universidad Complutense de Madrid, Madrid, In SpanishGoogle Scholar
  3. Ballesteros F (1998) Las especies de caza en España. Biología, ecología y conservación. Estudio y Gestión del Medio, Colección técnica, Oviedo [In Spanish]Google Scholar
  4. Bautista LM, García JT, Calmaestra RG, Palacín C, Martín CA, Morales MB, Bonal R, Viñuela J (2004) Effect of weekend road traffic on the use of space by raptors. Conserv Biol 18:726–732. doi:10.1111/j.1523-1739.2004.00499.x CrossRefGoogle Scholar
  5. Beja P, Pais M, Palma L (2007) Rabbit Oryctolagus cuniculus habitats in Mediterranean scrubland: the role of scrub structure and composition. Wildlife Biol 13:28–37. doi:10.2981/0909-6396(2007)13[28:ROCHIM]2.0.CO;2 CrossRefGoogle Scholar
  6. Benediktsson JA, Sveinsson JR (1997) Feature extraction for multisource data classification with artificial neural networks. Int J Remote Sens 18:727–740. doi:10.1080/014311697218728 CrossRefGoogle Scholar
  7. Bischof H, Schneider W, Pinz AJ (1992) Multispectral classification of Landsat images using neural networks. Ieee T Geosci Remote 30:482–490. doi:10.1109/36.142926 CrossRefGoogle Scholar
  8. Buckland ST, Elston DA (1993) Empirical models for spatial distribution of wildlife. J Appl Ecol 30:478–495. doi:10.2307/2404188 CrossRefGoogle Scholar
  9. Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New YorkCrossRefGoogle Scholar
  10. Calvete C, Estrada R, Angulo R, Cabezas-Ruiz S (2004) Habitat factors related to wild rabbit conservation in an agricultural landscape. Landscape Ecol 19:531–542. doi:10.1023/B:LAND.0000036139.04466.06 CrossRefGoogle Scholar
  11. Campbell JB (2008) Introduction to remote sensing, 4th edn. Taylor and Francis, LondonGoogle Scholar
  12. Caruso S, Siracusa A (2001) Factors affecting the abundance of wild rabbit (Oryctolagus cuniculus) in agro-ecosystems of the Mount Etna Park. Hystrix It J Mamm 12:45–49. doi:10.4404/hystrix-12.1-4170 Google Scholar
  13. Carvalho JC, Gomes P (2003) Habitat suitability model for European wild rabbit (Oryctolagus cuniculus) with implications for restocking. Game Wildl Sci 20:287–301Google Scholar
  14. Catalán I, Rodríguez-Hidalgo P, Tortosa FS (2008) Is habitat management an effective tool for wild rabbit (Oryctolagus cuniculus) population reinforcement? Eur J Wildl Res 54:449–453. doi:10.1007/s10344-007-0169-0 CrossRefGoogle Scholar
  15. Chuvieco E (2008) Teledetección ambiental. La observación de la Tierra desde el espacio. Ariel Ciencia, Barcelona [In Spanish]Google Scholar
  16. Cohen WB, Goward SN (2004) Landsat's role in ecological applications of remote sensing. Bioscience 54:535–545CrossRefGoogle Scholar
  17. Cohen WB, Maiersperger TK, Gower ST, Turner DP (2003) An improved strategy for regression of biophysical variables and Landsat ETM + data. Remote Sens Environ 84:561–571. doi:10.1016/S0034-4257(02)00173-6
  18. Delibes M, Hiraldo F (1981) The rabbit as a prey in Iberian Mediterranean ecosystem. In: Myers K, MacInnes CD (eds) Proceedings of the first World Lagomorph Conference. University of Guelph, Guelph, pp 614–622Google Scholar
  19. Delibes-Mateos M, Delibes M, Ferreras P, Villafuerte R (2008) Key role of European rabbits in the conservation of the western Mediterranean basin hotspot. Conserv Biol 22:1106–1117. doi:10.1111/j.1523-1739.2008.00993.x PubMedCrossRefGoogle Scholar
  20. DeFries RS, Hansen MC, Townshend JRG (2000) Global continuous fields of vegetation characteristics: a linear mixture model applied to multiyear 8 km AVHRR data. Int J Remote Sens 21:1389–1414. doi:10.1080/014311600210236 CrossRefGoogle Scholar
  21. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697CrossRefGoogle Scholar
  22. Fa JE, Sharples CM, Bell DJ (1999) Habitat correlates of European rabbit distribution in southern Spain. J Zool 249:83–96. doi:10.1111/j.1469-7998.1999.tb01062.x CrossRefGoogle Scholar
  23. Fenner F, Ross J (1994) Myxomatosis. In: Thompson HV, King CM (eds) The European rabbit. The history and biology of a successful colonizer. Oxford University Press, Oxford, pp 205–240Google Scholar
  24. Ferreira C (2012) European rabbit research in the Iberian Peninsula: state of the art and future perspectives. Eur J Wildlife Res 58:885–895. doi:10.1007/s10344-012-0664-9 CrossRefGoogle Scholar
  25. Foody GM (1995) Land-cover classification by an artificial neural-network with ancillary information. Int J Remote Sens 9:527–542. doi:10.1080/02693799508902054 Google Scholar
  26. Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201. doi:1016/S0034-4257(01)00295-4 CrossRefGoogle Scholar
  27. Foody GM, Arora MK (1997) An evaluation of some factors affecting the accuracy of classification by an artificial neural network. Int J Remote Sens 18:799–810. doi:10.1080/014311697218764 CrossRefGoogle Scholar
  28. Foody GM, Cox DP (1994) Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions. Int J Remote Sens 15:619–631. doi:10.1080/01431169408954100 CrossRefGoogle Scholar
  29. Foody GM, Lucas RM, Curran PJ, Honzak M (1997) Non-linear mixture modeling without end-members using an artificial neural network. Int J Remote Sens 18:937–953. doi:10.1080/014311697218845 CrossRefGoogle Scholar
  30. Franklin J, Miller JA (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, New YorkGoogle Scholar
  31. Gálvez-Bravo L (2011) Conejo – Oryctolagus cuniculus. In: Salvador A, Cassinello J (Eds) Enciclopedia Virtual de los Vertebrados Españoles. Museo Nacional de Ciencias Naturales. [In Spanish] http://www.vertebradosibericos.org/
  32. Gea-Izquierdo G, Muñoz-Igualada J, San Miguel-Aynaz A (2005) Rabbit warren distribution in relation to pasture communities in Mediterranean habitats, consequences for management of rabbit populations. Wildl Res 32:723–731. doi:10.1071/WR04129 CrossRefGoogle Scholar
  33. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186. doi:10.1016/S0304-3800(00)00354-9 CrossRefGoogle Scholar
  34. Herranz J, Yanes M, Súarez F (2000) Relaciones entre la abundancia de las especies de caza menor, sus depredadores y la estructura del hábitat en Castilla-La Mancha (España). Ecología 14:219–233 [In Spanish]Google Scholar
  35. Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309. doi:10.1016/0034-4257(88)90106-X CrossRefGoogle Scholar
  36. IUCN (2013). IUCN Red List of Threatened Species. Version 2013.1. http://www.iucnredlist.org. Accesses 19 Jul 2013
  37. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108. doi:10.1016/j.tree.2003.10.013 PubMedCrossRefGoogle Scholar
  38. Jones J (2001) Habitat selection in avian ecology: a critical review. Auk 118:557–562. doi:10.1642/0004-8038(2001)118[0557:HSSIAE]2.0.CO;2 Google Scholar
  39. Law BS, Dickman CR (1998) The use of habitat mosaics by terrestrial vertebrate fauna: implications for conservation and management. Biodivers Conserv 7:323–333CrossRefGoogle Scholar
  40. Lombardi L, Fernández N, Moreno S, Villafuerte R (2003) Habitat-related differences in rabbit (Oryctolagus cuniculus) abundance, distribution, and activity. J Mammal 84:26–36. doi:10.1644/15451542(2003)084<0026:HRDIRO>2.0.CO;2 CrossRefGoogle Scholar
  41. Lombardi L, Fernández N, Moreno S (2007) Habitat use and spatial behaviour in the European rabbit in three Mediterranean environments. Basic Appl Eco 8:453–463. doi:10.1016/j.baae.2006.09.004 CrossRefGoogle Scholar
  42. Martínez-Cortizas A, Pérez-Alberti A (1999) Atlas Bioclimático de Galicia. Xunta de Galicia. Xunta de Galicia, Santiago de Compostela, In SpanishGoogle Scholar
  43. Monclús R, De Miguel FJ (2003) Distribución espacial de las letrinas de Conejo (Oryctolagus cuniculus) en el Monte de Valdelatas (Madrid). Galemys 15:157–165Google Scholar
  44. Monzón A, Fernandes P, Rodrigues N (2004) Vegetation structure descriptors regulating the presence of wild rabbit in the National Park of Peneda-Gerês, Portugal. Eur J Wildlife Res 50:1–6. doi:10.1007/s10344-003-0027-7 CrossRefGoogle Scholar
  45. Morán-Ordóñez A, Suárez-Seoane S, Elith J, Calvo L, De Luis E (2012) Satellite surface reflectance improves habitat distribution mapping: a case study on heath and shrub formations in the Cantabrian Mountains (NW Spain). Divers Distrib 18:588–602. doi:10.1111/j.1472-4642.2011.00855.x CrossRefGoogle Scholar
  46. Morrison ML, Marcot BG, Mannan RW (1998) Wildlife-habitat relationships: concepts and applications. University of Wisconsin Press, Madison. doi:10.2307/3809101 Google Scholar
  47. Newton-Cross G, White PCL, Harris S (2007) Modelling the distribution of badgers Meles meles: comparing predictions from field-based and remotely derived habitat data. Mammal Rev 37:54–70. doi:10.1111/j.1365-2907.2007.00103.x CrossRefGoogle Scholar
  48. Palomares F (2001) Comparison of 3 methods to estimate rabbit abundance in a Mediterranean environment. Wildl Soc Bull 292:578–585Google Scholar
  49. Pearson RG (2007) Species' distribution modeling for conservation educators and practitioners: synthesis: Lessons in Conservation. American Museum of Natural History, New YorkGoogle Scholar
  50. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  51. Pons X (2000) Geographic Information System and Remote Sensing software. Centre de Recerca Ecològica i Aplicacions Forestals, CREAF. http://www.creaf.uab.es/miramon
  52. Pons X, Solé-Sugrañes L (1994) A simple radiometric correction model to improve automatic mapping of vegetation from multispectral satellite data. Remote Sens Environ 48:191–204. doi:10.1016/0034-4257(94)90141-4 CrossRefGoogle Scholar
  53. Pulgar I (2003) Guía de la flora del Parque Natural Baixa-Limia Serra do Xurés. Consellería de Medio Ambiente, Xunta de Galicia, Santiago de Compostela [In Spanish]Google Scholar
  54. Purroy F, Varela JM (2003) Guía de los Mamíferos de España. Lynx Edicions, Barcelona [In Spanish]Google Scholar
  55. Regos A, Ninyerola M, Moré G, Pons X (2012a) Evaluación de las dinámicas temporales de las cubiertas y usos del suelo mediante comparación post-clasificación e índices de área relativa. In: Martínez Vega J, Martín Isabel P (eds) Libro de actas del XV Congreso Nacional de Tecnologías de la información Geográfica en el contexto del Cambio Global. AGE-CSIC, Madrid, pp 195–204 [In Spanish]Google Scholar
  56. Regos A, Tapia L, Vidal M, Domínguez J (2012b) Teledetección y SIGs como fuentes de información ambiental en el modelado de distribución de especies: el caso práctico del Conejo europeo. In: Martínez Vega J, Martín Isabel P (eds) Libro de actas del XV Congreso Nacional de Tecnologías de la información Geográfica en el contexto del Cambio Global. AGE-CSIC, Madrid, pp 205–214 [In Spanish]Google Scholar
  57. Richards JA, Jia X (2006) Remote sensing digital image analysis: an introduction. Springer, HeidelbergGoogle Scholar
  58. Rodríguez JP, Brotons L, Bustamante J, Seoane J (2007) The application of predictive modelling of species distribution to biodiversity conservation. Divers Distrib 13:243–251. doi:10.1111/j.1472-4642.2007.00356.x CrossRefGoogle Scholar
  59. Rodríguez L, Tapia L (2012) Suitable breeding habitat for golden eagle (Aquila chrysaëtos) in a border of distribution area in northwestern Spain: advantages of using remote sensing information vs land use maps. Vie Milieu 62:77–85Google Scholar
  60. Rouse JW, Hass RW, Schell JA, Deering DH, Harlan JC (1974) Monitoring the vernal advancement and retrogradation (Greenwave effect) of natural vegetation. NASA/GSFC, GreenbeltGoogle Scholar
  61. Rushton SP, Ormerod SJ, Kerby G (2004) New paradigms for modelling species distributions? J Appl Ecol 41:193–200. doi:10.1111/j.0021-8901.2004.00903.x CrossRefGoogle Scholar
  62. Sarasola JH, Bustamante J, Negro JJ, Travaini A (2008) Where do Swainson's Hawks winter? Satellite images to identify potential habitats. Divers Distrib 14:742–753. doi:10.1111/j.1472-4642.2008.00477.x CrossRefGoogle Scholar
  63. Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) (2002) Predicting species occurrences: issues of accuracy and scale. Island Press, WashingtonGoogle Scholar
  64. Seoane J, Bustamante J (2001) Modelos predictivos de la distribución de especies: una revisión de sus limitaciones. Ecología 15:9–21 [In Spanish]Google Scholar
  65. Seoane J, Bustamante J, Díaz-Delgado R (2004) Are existing vegetation maps adequate to predict bird distributions? Ecol Model 175:137–149. doi:10.1016/j.ecolmodel.2003.10.011 CrossRefGoogle Scholar
  66. Serra P, Pons X, Sauri D (2003) Post-classification change detection with data from different sensors: some accuracy considerations. Int J Remote Sens 24:3311–3340. doi:10.1080/0143116021000021189 CrossRefGoogle Scholar
  67. Soriguer RC, Palacios F (1996) Los lagomorfos ibéricos: Liebres y Conejos. In: Colegio Oficial de Biólogos (ed) Curso de gestión y ordenación cinegética. Junta de Andalucía, Granada, In SpanishGoogle Scholar
  68. Tapia L (2004) Estudio de la comunidad de Falconiformes de la provincia de Ourense. Con mención especial para sus sierras suroccidentales. PhD Thesis, Universidad de Santiago de Compostela, Santiago de Compostela, In SpanishGoogle Scholar
  69. Tapia L, Kennedy P, Mannan B (2007) Habitat sampling. In: Bird D, Bildstein K (eds) Raptor research and management techniques manual. Raptor Research Foundation. Hancock House Publishers, Surrey, pp 153–169Google Scholar
  70. Tapia L, Domínguez J, Rodríguez J (2010) Modelling habitat use by Iberian hare Lepus granatensis and European wild rabbit Oryctolagus cuniculus in a mountainous area in northwestern Spain. Acta Theriol 55:73–79. doi:10.4098/j.at.0001-7051.018.2009 CrossRefGoogle Scholar
  71. Taylor AR, Knight RL (2003) Wildlife responses to recreation and associated visitor perceptions. Ecol Appl 13:951–963. doi:10.1890/1051-0761(2003)13[951:WRTRAA]2.0.CO;2 CrossRefGoogle Scholar
  72. Tuanmu MN, Viña A, Roloff GJ, Liu W, Ouyang Z, Zhang H, Liu J (2011) Temporal transferability of wildlife habitat models: implications for habitat monitoring. J Biogeogr 38:1510–1523. doi:10.1111/j.1365-2699.2011.02479.x CrossRefGoogle Scholar
  73. Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18:306–314CrossRefGoogle Scholar
  74. Vargas J (2002) Alerta cinegética. Otero Ediciones, Málaga [In Spanish]Google Scholar
  75. Villafuerte R, Moreno S (1997) Predation risk, cover type, and group size in European rabbits in Doñana (SW Spain). Acta Theriol 422:225–230Google Scholar
  76. Villafuerte R, Calvete C, Blanco JC, Lucientes J (1995) Incidence of viral hemorrhagic disease in wild rabbit populations in Spain. Mammalia 59:651–659. doi:10.1515/mamm.1995.59.4.651 CrossRefGoogle Scholar
  77. Virgós E, Cabezas-Díaz S, Malo A, Lozano J, López-Huertas D (2003) Factors shaping European rabbit abundance in continuous and fragmented populations of central Spain. Acta Theriol 48:113–122. doi:10.1007/BF03194271 CrossRefGoogle Scholar
  78. Ward D (2005) Reversing rabbit decline: one of the biggest challenges for nature conservation in Spain and Portugal. IUCN Technical Report. http://www.ualberta.ca/~dhik/lsg/report_lynx_rabit.pdf
  79. Wood DH (1988) Estimating rabbit density by counting dung pellets. Aust Wildlife Res 15:665–671. doi:10.1071/WR9880665 CrossRefGoogle Scholar
  80. Yuan H, Van Der Wiele CF, Khorram S (2009) An automated artificial neural network system for land use/land cover classification from Landsat TM imagery. Remote Sens 1:243–265. doi:10.3390/rs1030243 CrossRefGoogle Scholar
  81. Zhu ZL, Evans DL (1992) Mapping midsouth forest distributions. J Forest 90:27–30Google Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2013

Authors and Affiliations

  1. 1.Department of Zoology and Physical AnthropologyUniversity of Santiago de CompostelaGaliciaSpain
  2. 2.Forest Science Center of CataloniaSolsonaSpain
  3. 3.CREAF (Centre for Ecological Research and Forestry Applications)Autonomous University of BarcelonaBellaterraSpain

Personalised recommendations