Advertisement

Acta Theriologica

, Volume 59, Issue 2, pp 299–309 | Cite as

Body temperature patterns and use of torpor in an alpine glirid species, woolly dormouse

  • Mutlu Kart GürEmail author
  • Şafak Bulut
  • Hakan Gür
  • Roberto Refinetti
Original Paper

Abstract

Woolly dormice, Dryomys laniger Felten and Storch (Senckenbergiana Biol 49(6):429–435, 1968), are a small (20–30 g), omnivorous (mainly insectivorous), nocturnal glirid species endemic to Turkey. Although woolly dormice have been assumed to hibernate during winter, no information exists on body temperature patterns and use of torpor in the species. In the present study, we aimed to determine body temperature patterns and use of torpor in woolly dormice under controlled laboratory conditions. Accordingly, body temperature (Tb) of woolly dormice was recorded using surgically implanted Thermochron iButtons, small and inexpensive temperature-sensitive data loggers. Woolly dormice exhibited robust, unimodal daily Tb rhythmicity during the euthermic stage before the beginning of hibernation. They displayed short torpor before they began hibernation, although the tendency to enter short torpor was different among individuals. Woolly dormice began hibernation within 1–3 days after exposure to cold and darkness, i.e., on October 22–24, and ended hibernation in the first half of April. Hibernation consisted of a sequence of multiday torpor bouts, interrupted by euthermic intervals. Thus, the patterns of hibernation in woolly dormice were similar to those observed in classical hibernating mammals.

Keywords

Dryomys laniger Hibernation Rhythmicity Thermochron iButton Thermoregulation 

Notes

Acknowledgments

We would like to thank F. Spitzenberger for providing her papers on woolly dormice; E. S. Akarsu and D. Kolankaya for providing the laboratory equipments; S. Mamuk for help in the laboratory; and two anonymous reviewers for their helpful comments. We extend our warm thanks to E. Kart for modification of Thermochron iButtons.

References

  1. Bennett AF, Ruben JA (1979) Endothermy and activity in vertebrates. Science 206:649–654PubMedCrossRefGoogle Scholar
  2. Bieber C, Ruf T (2009) Summer dormancy in edible dormice (Glis glis) without energetic constraints. Naturwissenschaften 96(1):165–171PubMedCrossRefGoogle Scholar
  3. Cranford JA (1978) Hibernation in the western jumping mouse (Zapus princeps). J Mamm 59(3):496–509CrossRefGoogle Scholar
  4. Daan S, Aschoff J (2001) The entrainment of circadian systems. In: Takahashi JS, Turek FW, Moore RY (eds) Handbook of behavioral neurobiology, vol 12. Circadian Clocks, Kluwer Academic/Plenum, New York, pp 7–43CrossRefGoogle Scholar
  5. Felten H, Storch G (1968) Eine neue Schläfer-Art Dryomys laniger n. sp. aus Kleinasien (Rodentia: Gliridae). Senckenbergiana Biol 49(6):429–435Google Scholar
  6. Felten H, Spitzenberger F, Storch G (1973) Zur Kleinsäugerfauna West-Anatoliens. Teil II. Senckenbergiana Biol 54:227–290Google Scholar
  7. Florant GL, Fenn AM, Healy JE, Wilkerson GK, Handa RJ (2010) To eat or not to eat: the effect of AICAR on food intake regulation in yellow-bellied marmots (Marmota flaviventris). J Exp Biol 213:2031–2037PubMedCentralPubMedCrossRefGoogle Scholar
  8. Fluxman S, Haim A (1993) Daily rhythms of body temperature in Acomys russatus: the response to chemical signals released by Acomys cahirinus. Chronobiol Int 10(3):159–164PubMedCrossRefGoogle Scholar
  9. Fowler PA, Racey PA (1990) Daily and seasonal cycles of body temperature and aspects of heterothermy in the hedgehog, Erinaceus europaeus. J Comp Physiol B 160(3):299–307CrossRefGoogle Scholar
  10. French AR (1985) Allometries of the durations of torpid and euthermic intervals during mammalian hibernation: a test of theory of metabolic control of the timing of changes in body temperature. J Comp Physiol B 156:13–19PubMedCrossRefGoogle Scholar
  11. French AR (1988) Patterns of mammalian hibernation. Am Sci 76:569–575Google Scholar
  12. Geiser F, Baudinette B (1988) Daily torpor and thermoregulation in the small dasyurid marsupials Planigale gilesi and Ningaui yvonneae. Aust J Zool 36:473–481CrossRefGoogle Scholar
  13. Geiser F, Kenagy GJ (1988) Torpor duration in relation to temperature and metabolism in hibernating ground squirrels. Physiol Zool 61(5):442–449Google Scholar
  14. Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68:935–966Google Scholar
  15. Geiser F (2001) Hibernation: endotherms. In “Encyclopedia of life sciences”, Macmillian, Nature Publishing Group, New York, pp 1–8Google Scholar
  16. Grahn DA, Miller JD, Houng VS, Heler HC (1994) Persistence of circadian rhythmicity in hibernating ground squirrels. Am J Physiol 266(35):R1251–1258PubMedGoogle Scholar
  17. Haim A, Van Aarde RJ, Zisapel N (1997) Body temperature daily rhythms in the striped Mouse Rhabdomys pumilio: the effects of α and α Blocade. Physiol Behav 63(5):889–893CrossRefGoogle Scholar
  18. Heldmaier G, Ruf T (1992) Body temperature and metabolic rate during natural hypothermia in endotherms. J Comp Physiol B 162(8):696–706PubMedCrossRefGoogle Scholar
  19. Heller HC, Poulson TL (1970) Circadian rhythms-II. Endogenous and exogenous factors controlling reproduction and hibernation in chipmunks (Eutamias) and ground squirrels (Spermophilus). Comp Biochem Physiol 33:357–383CrossRefGoogle Scholar
  20. Heller HC, Colliver GW (1974) CNS regulation of body temperature during hibernation. Am J Physiol 227(3):583–589PubMedGoogle Scholar
  21. Humphries MM, Thomas DW, Kramer DL (2001) Torpor and digestion in food-storing hibernators. Physiol Biochem Zool 74(2):283–292PubMedCrossRefGoogle Scholar
  22. Hut RA, Barnes BM, Daan S (2002) Body temperature patterns before, during, and after semi-natural hibernation in the European ground squirrel. J Comp Physiol B 172:47–58PubMedCrossRefGoogle Scholar
  23. Institute for Laboratory Animal Research-ILAR (2011) Guide for the care and use of laboratory animals, 8th edn. The National Academies, Washington, DCGoogle Scholar
  24. IUCN (2008) The IUCN red list of threatened species. IUCN, CambridgeGoogle Scholar
  25. Jansky L, Vanecek J, Hanzal V (1989) Absence of circadian rhythmicity during hibernation. In: Malan A, Canguilhem B (eds) Living in the cold. INSERM/Libby, Paris, pp 34–38Google Scholar
  26. Kart Gür M (2008) Hibernation pattern of Anatolian ground squirrel (Spermophilus xanthoprymnus). Hacettepe University, DissertationGoogle Scholar
  27. Kart Gür M, Refinetti R, Gür H (2009) Daily rhythmicity and hibernation in the Anatolian ground squirrel under natural and laboratory conditions. J Comp Physiol B 179(2):155–164PubMedCrossRefGoogle Scholar
  28. Keckler MS, Gallardo-Romero NF, Langham GL, Damon IK, Karem KL, Carroll DS (2010) Physiologic reference ranges for captive black-tailed prairie dogs (Cynomys ludovicianus). J Am Assoc Lab Anim Sci 49(3):274–281PubMedCentralPubMedGoogle Scholar
  29. Kıvanç E, Sözen M, Çolak E, Yiğit N (1997) Karyological and phallic characteristics of Dryomys laniger Felten and Storch, 1968 (Rodentia: Gliridae) in Turkey. Israel J Zool 43:401–403Google Scholar
  30. Kobbe S, Ganzhorn JU, Dausmann KH (2011) Extreme individual flexibility of heterothermy in freeranging Malagasy mouse lemurs (Microcebus griseorufus). J Comp Physiol B 181(1):165–173PubMedCrossRefGoogle Scholar
  31. Körtner G, Song X, Geiser F (1998) Rhythmicity of torpor in a marsupial hibernator, the mountain pygmy-possum (Burramys parvus), under natural and laboratory conditions. J Comp Physiol B 168:631–638PubMedCrossRefGoogle Scholar
  32. Körtner G, Geiser F (2000) The temporal organization of daily torpor and hibernation: circadian and circannual rhythms. Chronobiol Int 17(2):103–128PubMedCrossRefGoogle Scholar
  33. Kryštufek B, Vohralík V (2005) Mammals of Turkey and Cyprus Rodentia I: Sciuridae, Dipodidae, Gliridae. Arvicolinea. Kniznica Annales Majora, Koper, SloveniaGoogle Scholar
  34. Krzanowski A (1961) Weight dynamics of bats wintering in a cave at Pulawy (Poland). Acta Theriol 4:242–264Google Scholar
  35. Lovegrove BG (2000) Daily heterothermy in mammals: coping with unpredictable environments. In: Heldmaier G, Klingenspor M (eds) Life in the Cold: 11th International Hibernation Symposium. Springer, Berlin, pp 29–40CrossRefGoogle Scholar
  36. Lovegrove BG (2009) Modification and miniaturization of Thermochron iButtons for surgical implantation into small animals. J Comp Physiol B 179(4):451–458PubMedCrossRefGoogle Scholar
  37. Lyman CP, Willis JS, Malan A, Wang LCH (1982) Hibernation and torpor in mammals and birds. Academic, New YorkGoogle Scholar
  38. McKechnie AE, Mzilikazi N (2011) Heterothermy in Afrotropical mammals and birds: a review. Integr Comp Biol 51(3):349–363PubMedCrossRefGoogle Scholar
  39. Menaker M (1961) The free running period of the bat clock; seasonal variations at low body temperature. J Cell Comp Physiol 57(2):81–86PubMedCrossRefGoogle Scholar
  40. Michener GR (1992) Sexual differences in over-winter torpor patterns of Richardson’s ground squirrels in natural hibernacula. Oecologia 89:397–406Google Scholar
  41. Mrosovsky N (1971) Hibernation and the hypothalamus. Appleton-Century-Crofts, New YorkCrossRefGoogle Scholar
  42. Mumm B, Kaul R, Heldmaier G, Schmidt I (1989) Endogenous 24-hour cycle of core temperature and oxygen consumption in week-old Zucker rat pups. J Comp Physiol B 159:569–575PubMedCrossRefGoogle Scholar
  43. Mursaloğlu B (1973) Türkiye’nin Yabani Memelileri. TUBITAK IV. Bilim Kongresi Tebliğ Özetleri, 1–10Google Scholar
  44. Mzilikazi N, Madikiza Z, Oelkrug R, Baxter RM (2012) Hibernation in free-ranging African woodland dormice, Graphiurus murinus. In: Ruf T, Bieber C, Arnold W, Millesi E (eds) Living in a seasonal world, Thermoregulatory and Metabolic Adaptations. Springer, Berlin, pp 41–50CrossRefGoogle Scholar
  45. Nelson W, Tong YL, Lee JK, Halberg F (1979) Methods for cosinor rhythmometry. Chronobiologia 6(4):305–323PubMedGoogle Scholar
  46. Oklejewicz M, Daan S, Strijkstra AM (2001) Temporal organization of hibernation in wild-type and tau mutant Syrian hamsters. J Comp Physiol B 171:431–439PubMedCrossRefGoogle Scholar
  47. Pengelley ET, Fisher KC (1961) Rhythmical arousal from hibernation in Golden-mantled ground squirrel, Citellus lateralis tescorum. Can J Zool 39:105–120CrossRefGoogle Scholar
  48. Piccione G, Caola G, Refinetti R (2002) The circadian rhythm of body temperature of the horse. Biol Rhythm Res 33:113–119CrossRefGoogle Scholar
  49. Pretzlaff I, Dausmann KH (2012) Impact of climatic variation on the hibernation physiology of Muscardinus avellanarius. In: Ruf T, Bieber C, Arnold W, Millesi E (eds) Living in a seasonal world: thermoregulatory and metabolic adaptations. Springer, Berlin, pp 85–97CrossRefGoogle Scholar
  50. Refinetti R, Menaker M (1992) The circadian rhythm of body temperature. Physiol Behav 51:613–637PubMedCrossRefGoogle Scholar
  51. Refinetti R (1996) Comparison of the body temperature rhythms of diurnal and nocturnal rodents. J Exp Zool 275(1):67–70PubMedCrossRefGoogle Scholar
  52. Refinetti R (1998) Homeostatic and circadian control of body temperature in the fat-tailed gerbil. Comp Biochem Physiol A Mol Integr Physiol 119(1):295–300PubMedCrossRefGoogle Scholar
  53. Refinetti R (1999) Relationships between the daily rhythms of locomotor activity and body temperature in eight mammalian species. Am J Physiol 277:R1493–1500PubMedGoogle Scholar
  54. Refinetti R (2004) Non-stationary time series and robustness of circadian rhythms. J Theor Biol 227:571–581PubMedCrossRefGoogle Scholar
  55. Refinetti R, Cornélissen G, Halberg F (2007) Procedures for numerical analysis of circadian rhythms. Biol Rhythm Res 38:275–325PubMedCentralPubMedCrossRefGoogle Scholar
  56. Revel FG, Herwig A, Garidou ML, Dardente H, Menet JS, Pévet MM, Simonneaux V, Saboureau M, Pevet P (2007) The circadian clock stops ticking during deep hibernation in the European hamster. PNAS 104(34):13816–13820PubMedCentralPubMedCrossRefGoogle Scholar
  57. Rojas AD, Körtner G, Geiser F (2010) Do implanted transmitters affect maximum running speed of two small marsupials? J Mamm 91:1360–1364CrossRefGoogle Scholar
  58. Ruby NF, Dark J, Burns DE, Heller HC, Zucker I (2002) The suprachiasmatic nucleus is essential for circadian body temperature rhythms in hibernating ground squirrels. J Neurosci 22(1):357–364PubMedGoogle Scholar
  59. Ruby NF (2003) Hibernation: when good clocks go cold. J Biol Rhythm 18(4):275–286CrossRefGoogle Scholar
  60. Ruf T (1999) The Lomb-Scargle periodogram in biological rhythm research. Analysis of incomplete and unequally spaced time-series. Biol Rhythm Res 30:178–201CrossRefGoogle Scholar
  61. Russell RL, O’Neill PH, Epperson LE, Martin SL (2010) Extensive use of torpor in 13-lined ground squirrels in the fall prior to cold exposure. J Comp Physiol B 180(8):1165–1172PubMedCentralPubMedCrossRefGoogle Scholar
  62. Scott GW, Fisher KC, Love JA (1974) A telemetric study of the abdominal temperature of a hibernator, Spermophilus richardsonii, maintained under constant conditions of temperature and light during the active season. Can J Zool 52:653–658PubMedCrossRefGoogle Scholar
  63. Sheriff MJ, Williams CT, Kenagy GJ, Buck L, Barnes BM (2012) Thermoregulatory changes anticipate hibernation onset by 45 days: data from free-living arctic ground squirrels. J Comp Physiol B 182(6):841–847PubMedCrossRefGoogle Scholar
  64. Siegel AF (1980) Testing for periodicity in a time series. J Am Stat Assoc 75:345–348CrossRefGoogle Scholar
  65. Speakman JR, Rowland A (1999) Preparing for inactivity: how insectivorous bats deposit a fat store for hibernation. Proc Nutr Soc 58:123–131PubMedCrossRefGoogle Scholar
  66. Spitzenberger F (1976) Beiträge zur Kenntnis von Dryomys laniger Felten and Storch, 1968 (Gliridae, Mammalia). Z Säugetierkunde 41:237–249Google Scholar
  67. Strumwasser F (1958) Factors in the pattern, timing and predictability of hibernation in the squirrel, Citellus beecheyi. Am J Physiol 196:8–14Google Scholar
  68. Strumwasser F (1960) Some physiological principles governing hibernation in Citellus beecheyi. Bull Mus Comp Zool 124:285–320Google Scholar
  69. Wang LCH (1979) Time patterns and metabolic rates of natural torpor in Richardson’s ground squirrel. Can J Zool 57:149–155CrossRefGoogle Scholar
  70. Williams CT, Barnes BM, Buck CL (2012) Daily body temperature rhythms persist under the midnight sun but are absent during hibernation in free-living arctic ground squirrels. Biol Lett 8(1):31–34PubMedCentralPubMedCrossRefGoogle Scholar
  71. Wollnik F, Schmidt B (1995) Seasonal and daily rhythms of body temperature in the European hamster (Cricetus cricetus). J Comp Physiol B 165:171–182PubMedCrossRefGoogle Scholar
  72. Yiğit N, Çolak E, Çolak R, Özkan B, Özkurt Ş (2003) On the Turkish populations of Dryomys nitedula (Palas, 1779) and Dryomys laniger Felten and Storch, 1968 (Mammalia: Rodentia). Acta Zoologica Academiae Scientiarum Hungaricae 49(1):147–158Google Scholar
  73. Yiğit N, Çolak E, Çolak R, Özlük A, Gül N, Cam P, Saygılı F (2011) Biometric and allozymic variations in the genus Dryomys (Rodentia: Gliridae) in Turkey. Acta Zool Bulgar 63:67–75Google Scholar
  74. Young P (1990) Hibernating patterns of free-ranging Columbian ground squirrels. Oecologia 83:504–511CrossRefGoogle Scholar
  75. Zar JH (1999) Biostatistical Analysis, 4th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2013

Authors and Affiliations

  • Mutlu Kart Gür
    • 1
    Email author
  • Şafak Bulut
    • 2
  • Hakan Gür
    • 1
  • Roberto Refinetti
    • 3
  1. 1.Department of Biology, Faculty of Arts and SciencesAhi Evran UniversityKırşehirTurkey
  2. 2.Department of Biology, Faculty of ScienceHacettepe UniversityAnkaraTurkey
  3. 3.Circadian Rhythm LaboratoryUniversity of South CarolinaWalterboroUSA

Personalised recommendations