Skip to main content
Log in

Additive effects of climate and vegetation structure on the altitudinal distribution of greater white-toothed shrews Crocidura russula in a Mediterranean mountain range

  • Original Paper
  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

Environmental variation along geographic gradients determines the distribution of animals and plants trough both direct and indirect effects. We analyze the relative contribution of climate and vegetation structure variations along a Mediterranean altitude gradient on the patterns of abundance and occurrence of the greater white-toothed shrew Crocidura russula, a generalist small mammal whose distribution is constrained by cold conditions. Sampling was performed from February 1995 to July 1997 on nine plots covering a wide altitudinal gradient (540–1550 m a.s.l.). Structural equation models for the direct and indirect effects of climate and vegetation on shrew density and occupancy rates showed a stronger effect of vegetation structure (53 %) than direct climate effects (38 %) on shrew distribution. Shrews were more abundant in the warmer lowland sites, but were able to colonize highland cold areas by selecting habitats with well-developed understory vegetation (low shrubs or bracken). Vegetation effects were additive to climatic restrictions, seemingly providing more favorable microclimatic, and presumably food, conditions under shrub cover. Results indicate that predictions of range changes for shrews under climate change scenarios may underestimate expected range expansions under the current conditions of general land abandonment and shrub encroachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alcántara M. 1992. Distribución y preferencias de hábitat de los micromamíferos (Insectivora y Rodentia) de la Sierra de Guadarrama. PhD Thesis, Universidad Complutense de Madrid, Madrid: 1263.

  • Alonso CL, De Alba JM, Carbonell R, López de Carrión M, Monedero C, García FJ, Santos T (1996) Preferencias de hábitat invernal de la Musaraña Común (Crocidura russula) en un encinar fragmentado de la Submeseta Norte. Doñana Acta Vertebrata 23:175–188

    Google Scholar 

  • Anderson M (1976) Influence of trap saturation on estimates of animal abundance based on catch per unit effort. Oikos 27:316–319

    Article  Google Scholar 

  • Arbuckle JL (19832003) AMOS 5.0, student edition. Small Waters Corporation, Chicago, USA

  • Brändli L, Handley LJL, Vogel P, Perrin N (2005) Evolutionary history of the greater white-toothed shrew (Crocidura russula) inferred from analysis of mtDNA, Y, and X chromosome markers. Mol Phylogenet Evol 37:832–844

    Article  PubMed  Google Scholar 

  • Brown JH (1995) Macroecology. The University of Chicago Press, Chicago

    Google Scholar 

  • Cantoni D, Vogel P (1989) Social organisation and mating system of free-ranging, greater white-toothed shrews. Crocidura Russula Anim Behav 38:205–214

    Article  Google Scholar 

  • Churchfield S (1990) The natural history of shrews. Christopher Helm, A & C Black, London

    Google Scholar 

  • de Bolòs O (1983) La vegetació del Montseny. Diputació de Barcelona, Barcelona

    Google Scholar 

  • Devictor V, van Swaay C, Brereton T, Brotons L, Chamberlain D, Heliola J, Herrando S, Julliard R, Kuussaari M, Lindstrom A, Reif J, Roy DB, Schweiger O, Settele J, Stefanescu C, Van Strien A, Van Turnhout C, Vermouzek Z, WallisDeVries M, Wynhoff I, Jiguet F (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nat Clim Chang 2:121–124

    Article  Google Scholar 

  • Díaz M (1992) Rodent seed predation in cereal crop areas of Central Spain: effects of physiognomy, food availability, and predation risk. Ecography 15:77–85

    Article  Google Scholar 

  • Díaz M, Torre I, Arrizabalaga A (2010) Relative roles of density and rainfall on Mediterranean wood mouse (Apodemus sylvaticus) populations. Acta Theriol 55:251–260

    Article  Google Scholar 

  • Dirnbock T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob Chang Biol 17:990–996

    Article  Google Scholar 

  • Ehinger M, Fontanillas P, Petit E, Perrin N (2002) Mitochondrial DNA variation along an altitudinal gradient in the greater white-toothed shrew, Crocidura russula. Mol Ecol 11:939–945. doi:10.1046/j.1365-294X.2002.01487.x

    Article  CAS  PubMed  Google Scholar 

  • Everitt BS, Dunn G (1991) Applied multivariate data analysis. Edward Arnold, London

    Google Scholar 

  • Fontanillas P, Dépraz A, Giorgi MS, Perrin N (2005) Nonshivering thermogenesis capacity associated to mitochondrial DNA haplotypes and gender in the greater white-toothed shrew, Crocidura russula. Mol Ecol 14:661–670

    Article  CAS  PubMed  Google Scholar 

  • Genoud M, Hausser J (1979) Ecology of a Crocidura russula population in a rural mountain habitat. Terre et Vie 33:539–554

    Google Scholar 

  • Gurnell J, Flowerdew JR (1990) Live trapping small mammals. A practical guide. Occassional Publ Mamm Soc London 3:1–39

    Google Scholar 

  • Helmuth B, Kingsolver JG, Carrington E (2005) Biophysics, physiological ecology, and climate change: does mechanism matter? Annu Rev Physiol 67:177–201

    Article  CAS  PubMed  Google Scholar 

  • Hesterberg T, Moore DS, Monaghan S, Clipson A, Epstein R (2005) Bootstrap methods and permutation tests, 2nd edn. W. H. Freeman, N.Y

    Google Scholar 

  • Jaquiéry J, Guélat J, Broquet T, Berset-Brändli L, Pellegrini E, Moresi R, Hirzel AH, Perrin N (2008) Habitat-quality effects on metapopulation dynamics in greater white-toothed shrews, Crocidura russula. Ecology 89:2777–2785

    Article  PubMed  Google Scholar 

  • Jump AS, Matyas C, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701

    Article  PubMed  Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151

    Article  Google Scholar 

  • Koerner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  Google Scholar 

  • Krebs CJ (1999) Ecological methodology. Addison Wesley, New York

    Google Scholar 

  • Lomolino MV, Riddle BR, Whittaker RJ, Brown JH (2010) Biogeography, 4th edn. Sinauer, Sunderland

    Google Scholar 

  • López-Fuster MJ (2007) Musaraña gris Crocidura russula Hermann 1780. Pp 128–130. In: Palomo LJ, Gisbert J, Blanco JC (eds) Atlas y Libro Rojo de los mamíferos terrestres de España. Dirección General de Conservación de la Naturaleza-SECEM-SECEMU, Madrid, 588

    Google Scholar 

  • Møller AP, Fiedler W, Berthold P (eds) (2010) Effects of climate change on birds. Oxford University Press, Oxford

    Google Scholar 

  • Morris DW (1996) Coexistence of specialist and generalist rodents via habitat selection. Ecology 77:2352–2364

    Article  Google Scholar 

  • Ninyerola M, Pons X and Roure JM (2003) Atlas Climàtic Digital De Catalunya. Universitat Autònoma de Barcelona and Generalitat de Catalunya

  • Rebelo H, Tarroso P, Jones G (2010) Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob Chang Biol 16:561–576

    Article  Google Scholar 

  • Sans-Coma V, López-Fuster MJ and Vargas JM (1987) Sobre la Musaraña Común (Crocidura russula) en el Sur de la Península Ibérica. Mamíferos y Helmintos, eds. V. Sans-Coma, S. Mas-Coma, and J.Gosálbez, Barcelona: 65–79

  • Sans-Fuentes MA, Ventura J (2000) Distribution patterns of the small mammals (Insectivora and Rodentia) in a transitional zone between the Eurosiberian and the Mediterranean regions. J Biogeogr 27:755–764

    Article  Google Scholar 

  • Sirami C, Brotons L, Burfield I, Fonderflick J, Martin JL (2008) Is land abandonment having an impact on biodiversity? A meta-analytical approach to bird distribution changes in the north-western Mediterranean. Biol Conserv 141:450–459

    Article  Google Scholar 

  • Slade NA, Blair SM (2000) An empirical test of using counts of individuals captured as indices of population size. J Mammal 81:1035–1045

    Article  Google Scholar 

  • Stefanescu C, Carnicer J, Peñuelas J (2011) Determinants of species richness in generalist and specialist Mediterranean butterflies: the negative synergistic forces of climate and habitat change. Ecography 34:353–363

    Article  Google Scholar 

  • Terradas J and Miralles J (1986) El patrimoni biològic del Montseny. Catàlegs de flora i fauna 1. Diputació de Barcelona, Spain

  • Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB (2011) Consequences of climate change on the tree of life in Europe. Nature 470:531–534

    Article  CAS  PubMed  Google Scholar 

  • Torre I, Arrizabalaga A (2008) Habitat preferences of the bank vole (Myodes glareolus) in a Mediterranean mountain range. Acta Theriol 53:241–250

    Article  Google Scholar 

  • Torre I, Díaz M (2004) Small mammal abundance in Mediterranean post-fire habitats: a role for predators? Acta Oecol 25(3):137–142

    Article  Google Scholar 

  • Torre I, Díaz M, Martínez J, Bonal R, Viñuela J, Fargallo JA (2007) Cattle grazing, raptor abundance and small mammal communities in Mediterranean grasslands. Basic Appl Ecol 8:565–575

    Article  Google Scholar 

  • Triviño M, Thuiller W, Cabeza M, Hickler T, Araújo MB (2011) The contribution of vegetation and landscape configuration for predicting environmental change impacts on Iberian birds. PLoS One 6(12):e29373

    Article  PubMed Central  PubMed  Google Scholar 

  • Vallecillo S, Brotons L, Thuiller W (2009) Dangers of predicting bird species distributions in response to land-cover changes. Ecol Appl 19:538–549

    Article  PubMed  Google Scholar 

  • Van Horne B (1983) Density as a misleading indicator of habitat quality. J Wildl Manag 47:893–901

    Article  Google Scholar 

  • Wheatley M, Larsen KW, Boutin S (2002) Does density reflect habitat quality for North American Red squirrels during a spruce-cone failure? J Mammal 83:716–727

    Article  Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

Alexis Ribas and Andrés Requejo collaborated in the field work. Ferran Páramo helped with the figures. This study received financial and logistic support from the Oficina Tècnica de Parcs Naturals, Diputació de Barcelona. Suggestions by two anonymous referees improved the text a great deal during review. This paper is a contribution to the projects MONTES (CSD2008–00040) and RISKDISP (CGL2009-08430) of the Spanish Ministerio de Ciencia e Innovación and to the thematic network GlobiMed (www.globimed.net).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignasi Torre.

Additional information

Communicated by: Dr. Jan M. Wójcik

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torre, I., Díaz, M. & Arrizabalaga, A. Additive effects of climate and vegetation structure on the altitudinal distribution of greater white-toothed shrews Crocidura russula in a Mediterranean mountain range. Acta Theriol 59, 139–147 (2014). https://doi.org/10.1007/s13364-013-0128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-013-0128-y

Keywords

Navigation