Skip to main content
Log in

Allometry of the postnatal cranial ontogeny and sexual dimorphism in Otaria byronia (Otariidae)

  • Original Paper
  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

We studied the cranial postnatal ontogeny of Otaria byronia in order to detect sexual dimorphism in allometric terms, analyzing the rate of growth of functional variables linked to specific capacities as bite and head movements. We used 20 linear measurements to estimate allometric growth applying bivariate and multivariate analyses in females and males separately. Males were also analyzed in two partitioned subsets considering non-adult and adult stages, when the dimorphism is accentuated in order to reach optimal performance for intra-sexual competition. In the comparison of the employed techniques, we detected an empirical relationship between our multivariate results and the ordinary least square bivariate analysis. The quantitative analyses revealed different ontogenetic trajectories between non-adult and adult males in most variables, suggesting that the adult skull is not a scaled version of subadult skull. For instance, variables related with longitudinal dimensions decreased their allometric coefficients when the adult stage was reached, whereas those related with breadth or vertical dimensions increased their values. In adult males this could indicate that skull breadth and height are more important than longitudinal growth, relative to overall skull size. Conversely, inter-sexual comparisons showed that females and non-adult males shared similar ontogenetic growth trends, including more allometric trends than did males along their own ontogenetic trajectory. In general, adult males exhibited higher allometric coefficients than non-adult males in variables associated with bite and sexual behavior, whereas in comparison to females the latter showed higher coefficients values in these variables. Such patterns indicate a complex mode of growth in males beyond the growth extension, and are in partial agreement with changes previously reported for this and other species in the family Otariidae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdala F, Flores DA, Giannini NP (2001) Postweaning ontogeny of the skull of Didelphis albiventris. J Mammal 82(1):190–200. doi:10.1644/1545-1542

    Article  Google Scholar 

  • Alexander RM (1985) Body support, scaling and allometry. In: Hildebrand M, Wake DB (eds) Functional vertebrate morphology. Belknap Press of Harvard University Press, Cambridge, pp 27–37

    Google Scholar 

  • Badyaev AV (2002) Growing apart: an ontogenetic perspective on the evolution of sexual size dimorphism. Trends Ecol Evol 17:369–378. doi:10.1016/S0169-5347

    Article  Google Scholar 

  • Badyaev AV, Hill GE, Whittingham LA (2001) The evolution of sexual size dimorphism in the house finch: IV. Population divergence in ontogeny of dimorphism. Evolution 55:2534–2549

    Google Scholar 

  • Brunner S, Bryden M, Shaughnessy PD (2004) Cranial ontogeny of otariid seals. Syst Biodivers 2(1):83–110. doi:10.1017/S1477200004001367

    Article  Google Scholar 

  • Brunner S (1998) Skull development and growth in the southern fur seals Arctocephalus forsteri and A. pillosus (Carnivora:Otariidae). Aust J Zool 46:43–66. doi:10.1071/ZO97019

    Article  Google Scholar 

  • Bryden MM (1968) Control of growth in two populations of elephant seals. Nature (Lond) 217:1106–1108. doi:10.1038/2171106a0

    Article  Google Scholar 

  • Bryden MM (1972) Growth and development of marine mammals. In: Harrison RJ (ed) Functional anatomy of marine mammals. Academic press, London, pp. 1–79

  • Berg LM, Pyenson ND (2008) Osteological correlates and phylogenetic analysis of deep diving in living and extinct pinnipeds: what good are big eyeballs? J Vertebr Paleontol 28(Suppl):51A

    Google Scholar 

  • Campagna C, Le Boeuf BJ, Cappozzo HL (1988) Group raids: a mating strategy of male southern sea lions. Behav 105:224–249

    Article  Google Scholar 

  • Campagna C, Werner R, Karesh W, Martin AR, Koontz F, Cook R, Koontz C (2001) Movements and location at sea of South American sea lions (Otaria flavescens). J Zool 257:205–220

    Article  Google Scholar 

  • Cassini GH, Flores DA, Vizcaíno SF (2012) Postnatal ontogenetic scaling of Nesodontine (Notoungulata, Toxodontidae) cranial morphology. Acta Zool 93(3):249–259

    Google Scholar 

  • Cappozzo HL, Campagna C, Monserrat J (1991) Sexual dimorphism in newborn southern sea lions. Mar Mamm Sci 7:385–394. doi:10.1111/j.1748-7692.1991.tb00113.x

    Article  Google Scholar 

  • Cheverud JM, Wilson P, Dittus WPJ (1992) Primate population studies at Polonnaruwa. III. Somatometric growth in a natural population of togue macaques (Macaca sinica). J Hum Evol 23:51–77

    Google Scholar 

  • Chiasson RB (1957) The dentition of the Alaskan fur seal. J Mammal 38:310–319

    Article  Google Scholar 

  • Clinton WL (1994) Sexual selection and growth in male northern elephant seals. In: Le Boeuf BJ, Laws RM (eds) Elephant seals: population ecology, behaviour, and physiology. University of California Press, London, pp 154–168

    Google Scholar 

  • Cock A (1966) Genetical aspects of metrical growth and form in animals. Quart Rev Biol 41:131–190

    Google Scholar 

  • Corner BD, Richtsmeier JT (1991) Morphometric analysis of craniofacial growth in Cebus apella. Am J Phys Anthropol 84:323–342. doi:10.1002/ajpa.1330840308

    Article  CAS  PubMed  Google Scholar 

  • Crespo EA (1984) Dimorfismo sexual en los dientes caninos y en los cráneos del lobo marino del sur, Otaria flavescens (Shaw) (Pinnipedia, Otariidae). Rev Mus Argent Cienc Nat Bernardino Rivadavia 25(8):245–254

    Google Scholar 

  • Drehmer CJ, Ferigolo J (1997) Osteologia craniana comparada entre Arctocephalus australis e Arctocephalus tropicalis (Pinnipedia, Otariidae). Iheringia Ser Zool 83:137–149

    Google Scholar 

  • Emerson SB, Bramble DM (1993) Scaling, allometry and skull design. In: Hanken J, Hall BK (eds) The skull. The University of Chicago Press, Chicago, pp 384–416

    Google Scholar 

  • Flores DA, Giannini NP, Abdala F (2006) Comparative postnatal ontogeny of the skull in an Australidelphian Metatherian, Dasyurus albopunctatus (Marsupialia: Dasyuromorpha: Dasyuridae). J Morphol 267:426–440. doi:10.1002/jmor.10420

    Article  PubMed  Google Scholar 

  • Flores DA, Giannini NP, Abdala F (2003) Cranial ontogeny on Lutreolina crassicaudata (Didelphidae): a comparison with Didelphis albiventris. Acta Theriol 48(1):1–9. doi:10.1007/BF03194261

    Article  Google Scholar 

  • Flores DA, Abdala F, Giannini NP (2010) Cranial ontogeny of Caluromys philander (Didelphidae, Caluromyinae): a qualitative and quantitative approach. J Mammal 91:539–550. doi:10.1644/09-MAMM-A-291.1

    Article  Google Scholar 

  • Flores D, Casinos A (2011) Cranial ontogeny and sexual dimorphism in two new world monkeys: Alouatta caraya (Atelidae) and Cebus apella (Cebidae). J Morphol 272:744–757. doi:10.1002/jmor.10947

    Article  PubMed  Google Scholar 

  • Giannini N, Abdala F, Flores D (2004) Comparative postnatal ontogeny of the skull in Dromiciops gliroides (Marsupialia: Microbiotheriidae). Am Mus Novit 3460:1–17

    Article  Google Scholar 

  • Giannini NP, Segura V, Giannini MI, Flores D (2010) A quantitative approach to the cranial ontogeny of the puma. Mamm Biol 75(6):547–554. doi:10.1016/j.mambio.2009.08.001

    Google Scholar 

  • Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev 41:587–638. doi:10.1111/j.1469-185X.1966.tb01624.x

    Article  CAS  PubMed  Google Scholar 

  • Hamilton JE (1934) The southern sea lion Otaria byronia (De Blainville). Discovery Rep 19:121–164

    Google Scholar 

  • Huxley JS, Teissier G (1936) Terminology of relative growth. Nature 137:780–781

    Google Scholar 

  • Isaac JL (2005) Potential causes and life-history consequences of sexual size dimorphism in mammals. Mammal Rev 35:101–115. doi:10.1111/j.1365-2907.2005.00045.x

    Article  Google Scholar 

  • Janis CM (1990) Correlation of cranial and dental variables with body size in ungulates and macropodoids. In: Damuth J, MacFadden BJ (eds) Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press, Cambridge, pp 255–300

    Google Scholar 

  • Jefferson TA, Webber MA, Pitman RL (2008) Marine mammals of the world: a comprehensive guide to their identification. Academic Press, Elsevier

    Google Scholar 

  • Jolicoeur P (1963) The multivariate generalization of the allometry equation. Biometrics 19:497–499

    Article  Google Scholar 

  • Jones KE, Goswami A (2010) Quantitative analysis of the influences of phylogeny and ecology on phocid and otariid pinniped (Mammalia; Carnivora) cranial morphology. J Zool 280:297–308. doi:10.1111/j.1469-7998.2009.00662.x

    Article  Google Scholar 

  • Jungers WL, German RZ (1981) Ontogenetic and interspecific skeletal allometry in nonhuman primates: bivariate versus multivariate analysis. Am J Phys Anthropol 55:195–202. doi:10.1002/ajpa.1330550206

    Article  Google Scholar 

  • King JE (1972) Observations on phocid skulls. In: Harrison RJ (ed) Functional anatomy of marine mammals. Academic Press, London, pp 81–115

    Google Scholar 

  • Klingenberg CP (1996) Multivariate allometry. In: Marcus LF, Corti M, Loy A, Slice D, Naylor G (eds) Advances in morphometrics. Plenum Press, New York, pp 23–48

    Chapter  Google Scholar 

  • Kunz TH, Robson SK (1995) Postnatal growth and development in the Mexican free-tailed bat (Tadarida brasiliensis mexicana): birth size, growth rates, and age estimation. J Mammal 76(3):769–783

    Article  Google Scholar 

  • Laird AK (1965) Dynamics of relative growth. Growth 29:249–263

    CAS  PubMed  Google Scholar 

  • Leigh SR (1992) Patterns of variation in the ontogeny of primate body size dimorphism. J Hum Evol 23:2750. doi:10.1016/0047-2484(92)90042-8

  • Lindenfors P, Tullberg BS, Biuw M (2002) Phylogenetic analyses of sexual selection and sexual size dimorphism in pinnipeds. Behav Ecol Sociobiol 52:188–193. doi:10.1007/s00265-002-0507-x

    Article  Google Scholar 

  • Manly BFJ (1997) Randomization, bootstrap, and Monte Carlo methods in biology, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Maunz M, German RZ (1996) Craniofacial heterochrony and sexual dimorphism in the shorttailed opossum (Monodelphis domestica). J Mammal 77:992–1005

    Article  Google Scholar 

  • McLaren IA (1993) Growth in pinnipeds. Biol Rev 68:1–79. doi:10.1111/j.1469-185X.1993.tb00731.x

    Article  CAS  PubMed  Google Scholar 

  • Meachen-Samuels J, Van Valkenburgh B (2009) Craniodental indicators of prey size preference in the Felidae. Biol J Linn Soc 96:784–799. doi:10.1111/j.1095-8312.2008.01169.x

    Article  Google Scholar 

  • Molina-Schiller DM (2000) Age and cranial development of Arctocephalus australis in the coast of Rio Grande do Sul, Brazil. Master thesis. FURG

  • Moore WJ (1981) The mammalian skull. Cambridge University Press, Cambridge

    Google Scholar 

  • Moore WJ, Lavelle CV (1974) Growth of the facial skeleton in the hominoidea. Academic Press, London

  • Mosimann JE (1970) Size allometry: size and shape variables with characterization of log-normal and generalized gamma distributions. J Am Stat Assoc 65:930–948

    Article  Google Scholar 

  • Nelson TW, Shump KA Jr (1978) Cranial variation in size allometry in Agouti paca from Ecuador. J Mammal 59:387–394

    Article  Google Scholar 

  • Payne MR (1979) Growth in the Antarctic fur seal Arctocephalus gazella. J Zool (Lond) 187:1–20. doi:10.1111/j.1469-7998.1979.tb07709.x

    Article  Google Scholar 

  • Peters TA (1993) The history and development of transaction log analysis. Library Hi Tech 11(2):41–66

    Article  Google Scholar 

  • Prestrud P, Nilssen K (1995) Growth, size, and sexual dimorphism in arctic foxes. J Mammal 76:522–530

    Article  Google Scholar 

  • Quenouille MH (1956) Notes on bias in estimation. Biometrika 43:353–360

    Google Scholar 

  • Radinsky LB (1981) Evolution of skull shape in carnivores. I. Representative modern carnivores. Biol J Linn Soc 15:369–388. doi:10.1111/j.1095-8312.1981.tb00770.x

    Article  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria

  • Reyes LM, Crespo EA, Szapkievich V (1999) Distribution and population size of the southern sea lion (Otaria flavescens) in Central and Southern Chubut, Patagonia, Argentina. Mar Mamm Sci 15:478–493. doi:10.1111/j.1748-7692.1999.tb00814.x

    Article  Google Scholar 

  • Rosas FCW, Haimovici M, Pinedo MC (1993) Age and growth of the South American sea lion, Otaria flavescens (Shaw, 1800), in Southern Brazil. J Mammal 74(1):141–147

    Article  Google Scholar 

  • Sanfelice D, de Freitas RO (2008) A comparative description of dimorphism in skull ontogeny of Arctocephalus australis, Callorhinus ursinus and Otaria byronia. J Mammal 89(2):336–346. doi:10.1644/07-MAMM-A-344.1

    Article  Google Scholar 

  • Segura V, Prevosti F (2012) A quantitative approach to the cranial ontogeny of Lycalopex culpaeus (Carnivora: Canidae). Zoomorphology 131(1):79–92. doi:10.1007/s00435-012-0145-4

    Article  Google Scholar 

  • Simpson GG, Roe A, Lewontin RC (1960) Quantitative zoology. Harcourt, Brace and World Inc., New York

    Google Scholar 

  • Sivertsen E (1954) A survey of the eared seals (family Otariidae) with remarks on the Antartic seals colected by M/K “Norvegia” in 1928–1929. Det Norske Videnskaps-Akademi 36:1–76

    Google Scholar 

  • Smith RJ (1981) On the definition of variables in studies of primate allometry. Am J Phys Anthropol 55:323–329

    Article  CAS  PubMed  Google Scholar 

  • Stern AA, Kunz TH (1998) Intraspecific variation in postnatal growth in the greater spear-nosed bat. J Mammal 79:755–763

    Article  Google Scholar 

  • Tanner JB, Zelditch M, Lundrigan B, Holekamp K (2010) Ontogenetic change in skull morphology and mechanical advantage in the spotted hyena (Crocuta crocuta). J Morphol 271:353–365. doi:10.1002/jmor.10802

    PubMed  Google Scholar 

  • Trillmich F (1996) Parental investment in pinnipeds. In: Rosenblatt JS, Snowdon CT (eds) Parental Care: evolution, mechanisms, and adaptative significance. Academic Press, London, pp. 533–577

  • Warton DI, Weber NC (2002) Common slope tests for bivariate structural relationships. Biometrical J 44:161–174. doi:10.1002/1521-4036(200203)44:2<161::AID-BIMJ161>3.0.CO;2-N

    Article  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev Camb Philos Soc 81:259–291. doi:10.1017/S1464793106007007

    Article  PubMed  Google Scholar 

  • Wayne RK (1986) Cranial morphology of domestic and wild canids: the influence of development on morphological change. Evolution 40:243–261

    Article  Google Scholar 

  • Weckerly FW (1998) Sexual-size dimorphism: influence of mass and mating systems in the most dimorphic mammals. J Mammal 79:33–52

    Article  Google Scholar 

  • Zelditch ML, Sheets HD, Fink WL (2003) The ontogenetic dynamics of shape disparity. Paleobiology 29:139–156. doi:10.1666/0094-8373(2003)029<0139:TODOSD>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

We thank Damián Romero and Natalia Martino (MMPMa), Daniela Sanfelice (MCN), Diego Verzi and Itatí Olivares (MLP), Enrique Crespo and Néstor García (CNP), Ignacio Moreno (GEMARS), Natalie Goodall and volunteers (AMMA), Paulo Simões-Lopes and Mauricio Graipel (UFSC), Sergio Bogan (CFA), Sergio Lucero (MACN) and Stella Maris Velázquez (ZOO-BA), who allowed access to mammal collections and for making us very welcome during our visits. We are also grateful to Norma Chapire and Pablo Ganchegui for their logistical support, to Francisco Prevosti for his helpful advice on methodology and two anonymous reviewers for their valuable comments on an earlier draft of this paper. This work was financed by the Consejo Nacional de Investigaciones Científicas y Técnicas. DAF is grateful for project PICT ANPCyT1798 received during part of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bárbara A. Tarnawski.

Additional information

Communicated by: Emerson M. Vieira

Appendix I

Appendix I

Specimens examined in this study. CBL, condylo-basal length (millimetres). GM, geometric mean. Institution acronyms: CFA, Colección Fundación Félix de Azara (Buenos Aires, Argentina); CNP, Centro Nacional Patagónico (Puerto Madryn, Argentina); GEMARS, Grupo de Estudos de Mamíferos Marinhos (Porto Alegre, Brazil); LAMAMA, Laboratorio de Mamíferos Marinos of the Centro Nacional Patagónico (Puerto Madryn, Argentina); MACN, Museo Argentino de Ciencias Naturales Bernardino Rivadavia (Buenos Aires, Argentina); MCN, Museu de Ciências Naturais da Fundação Zoobotânica do Rio Grande do Sul (Porto Alegre, Brazil); MLP, Museo La Plata (La Plata, Argentina); MMPMa, Museo Municipal Lorenzo Scaglia (Mar del Plata, Argentina); RNP, Museo Acatushun de Aves y Mamíferos Marinos Australes (Ushuaia, Argentina); UFSC, Universidade Federal de Santa Catarina (Florianópolis, Brazil); ZOO-BA-M, Osteological mammal collection, Zoológico de Buenos Aires (Buenos Aires, Argentina). Sex: F, female; M, male. Age: J. juvenile; SA, subadult; AD, adult.

Collection number

Sex

Age class

CBL.

GM.

LAMAMA 141

F

J

139.4

43.6

LAMAMA 140

F

J

141.1

44.907

LAMAMA 331

F

J

152.6

46.385

MACN 23574

F

J

154.7

47.347

MACN 21740

F

J

168.4

49.517

MLP 26.IV.00.5

F

J

179.7

56.044

MACN 21739

F

J

179.7

51.302

LAMAMA 620

F

J

187

53.146

LAMAMA 484

F

SA

197.2

56.318

LAMAMA 144

F

SA

200.6

58.386

LAMAMA 556

F

SA

202.3

59.086

LAMAMA 237

F

SA

211.5

62.32

LAMAMA 686

F

SA

218.9

60.962

LAMAMA 623

F

AD

225.6

63.69

LAMAMA 604

F

AD

227.6

67.045

LAMAMA 417

F

AD

230.7

67.534

LAMAMA 147

F

AD

233.8

66.394

LAMAMA 505

F

AD

234

66.752

RNP 2319

F

AD

234.8

69.914

RNP 21737

F

AD

236.6

70.601

LAMAMA 243

F

AD

237.7

69.85

MLP 7.VII.50.1

F

AD

238.1

69.205

LAMAMA 555

F

AD

239.3

68.555

LAMAMA 033

F

AD

240.7

71.171

LAMAMA 444

F

AD

243.8

72.14

LAMAMA 127

F

AD

244

68.903

MACN 21738

F

AD

244.9

69.854

LAMAMA 253

F

AD

246.5

69.894

LAMAMA 588

F

AD

247.2

69.84

LAMAMA 024

F

AD

247.3

71.323

MLP 1531

F

AD

250.9

70.934

MACN 25138

F

AD

251.7

76.159

MACN 20573

F

AD

252.2

72.833

MLP 1060

F

AD

252.6

75.909

LAMAMA 303

F

AD

253

74.462

LAMAMA 61

F

AD

253.4

75.435

LAMAMA 616

F

AD

254.4

75.287

LAMAMA 590

F

AD

255.2

74.326

LAMAMA 578

F

AD

255.3

73.841

LAMAMA 026

F

AD

257.3

75.924

LAMAMA 385

F

AD

259.6

78.256

MACN 20578

F

AD

265.5

81.179

GEMARS 565

F

AD

266

81.854

LAMAMA 453

F

AD

267.6

79.19

LAMAMA 029

F

AD

269.6

79.762

MACN 22853

F

AD

270.6

80.551

MLP 27.X.97.14

F

AD

272.3

79.272

RNP 2364

F

AD

273.3

79.679

MACN 13.11

F

AD

277.5

87.042

RNP 2416

F

AD

277.9

80.588

MLP 41

F

AD

278.3

82.29

GEMARS 1323

F

AD

292.7

85.486

LAMAMA 139

M

J

140.4

41.89

LAMAMA 142

M

J

150.4

44.598

LAMAMA 569

M

J

162.7

47.948

MACN 24731

M

J

164.4

51.513

MACN 30236

M

J

168

47.073

LAMAMA115

M

J

174.8

49.69

LAMAMA 134

M

J

187.1

52.584

LAMAMA 329

M

J

192

54.157

LAMAMA 606

M

SA

199

58.362

LAMAMA 053

M

SA

207.8

60.208

MACN 21744

M

SA

210.5

59.437

GEMARS 813

M

SA

212.3

58.625

LAMAMA 371

M

SA

213.5

59.644

MLP 26.IV.00.6

M

SA

229.5

65.155

LAMAMA 427

M

SA

233.1

64.491

LAMAMA 629

M

SA

239

68.895

MLP 8.X.01.8

M

SA

244

68.804

LAMAMA 031

M

SA

247.2

73.388

MACN 50.52

M

SA

247.7

70.585

MLP 26.IV.00.8

M

SA

250.9

71.011

UFSC 1341

M

SA

252.6

76.82

MACN 22608

M

SA

257.2

75.157

LAMAMA 605

M

SA

258.3

76.259

LAMAMA 487

M

SA

260

75.972

MACN 21743

M

SA

260.2

77.821

GEMARS 343

M

SA

260.8

76.985

LAMAMA 270

M

SA

262.8

76.441

MMPMa 4086

M

SA

268

83.315

GEMARS 967

M

SA

269.3

82.048

MLP 475

M

SA

269.6

77.904

GEMARS 799

M

SA

270.5

80.839

MLP 453

M

SA

273.3

82.869

LAMAMA 105

M

SA

274.2

77.9

GEMARS 196

M

SA

274.7

82.966

LAMAMA 43

M

SA

275.5

82.886

MACN 22609

M

SA

280.8

87.338

GEMARS822

M

SA

283.8

87.184

GEMARS 229

M

SA

285.9

91.019

GEMARS 812

M

SA

290.5

86.742

LAMAMA 032

M

SA

291.1

88.839

MACN 20420

M

SA

292.3

87.933

MACN 22852

M

SA

293.1

88.296

LAMAMA 419

M

SA

293.8

87.269

LAMAMA 337

M

AD

294.8

92.279

RNP 2068

M

AD

294.9

88.794

RNP 2396

M

AD

296.5

91.055

MLP 14.IV.48.9

M

AD

296.8

89.394

GEMARS 659

M

AD

300.9

92.967

GEMARS 434

M

AD

307.2

97.373

LAMAMA 60

M

AD

307.8

99.917

RNP 2477

M

AD

309.3

96.113

LAMAMA 152

M

AD

311.2

102.499

MLP 1532

M

AD

314.9

98.629

LAMAMA 030

M

AD

318.4

102.939

LAMAMA 151

M

AD

319.2

100.067

LAMAMA 027

M

AD

320.5

99.485

LAMAMA 213

M

AD

322

103.855

LAMAMA 245

M

AD

322

99.485

MMPMa 4013

M

AD

324

107.393

LAMAMA 028

M

AD

324

107.737

RNP 2371

M

AD

325

101.78

LAMAMA 022

M

AD

325

113.826

RNP 2683

M

AD

327

106.535

MLP 1526

M

AD

330

105.642

RNP 2464

M

AD

330

108.157

RNP 2475

M

AD

330

100.019

RNP 2457

M

AD

330

102.171

LAMAMA 155

M

AD

330

108.727

LAMAMA 244

M

AD

330

108.945

LAMAMA 492

M

AD

330

110.249

LAMAMA 479

M

AD

333

116.955

MACN 22851

M

AD

335

106.888

MACN 27.27

M

AD

335

102.864

ZOO-BA-M-15

M

AD

335

104.986

RNP 2072

M

AD

335

101.775

RNP 2395

M

AD

335

104.437

GEMARS 428

M

AD

340

115.926

LAMAMA 490

M

AD

340

117.731

MACN 21984

M

AD

341

110.283

MACN 21994

M

AD

343

108.668

GEMARS 171

M

AD

345

116.387

RNP 2456

M

AD

345

113.455

MACN 23.26

M

AD

350

117.671

RNP 2633

M

AD

350

111.505

RNP 2467

M

AD

350

117.261

LAMAMA 025

M

AD

350

110.91

LAMAMA 250

M

AD

350

113.498

LAMAMA 353

M

AD

350

118.937

MACN 25168

M

AD

355

114.984

RNP 2468

M

AD

355

116.355

RNP 2365

M

AD

359

103.024

MLP 1330

M

AD

360

114.998

MLP 26.IV.00.10

M

AD

360

121.887

RNP 2635

M

AD

368

118.265

MLP 26.XII.02.36

M

AD

370

118.717

LAMAMA 199

M

AD

370

121.907

MLP 1332

M

AD

375

121.16

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarnawski, B.A., Cassini, G.H. & Flores, D.A. Allometry of the postnatal cranial ontogeny and sexual dimorphism in Otaria byronia (Otariidae). Acta Theriol 59, 81–97 (2014). https://doi.org/10.1007/s13364-012-0124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-012-0124-7

Keywords

Navigation