Skip to main content
Log in

New ways to go—nasal floor structures as channelling system for vomeronasal stimuli in the shrew (Sorex araneus, Mammalia)

  • Original Paper
  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

The mammalian lateral nasal gland (LNG, also called Steno’s gland) is known to be one source of so-called odorant-binding proteins, which are suggested to work as vehicles to carry chemosensory stimuli within the nasal cavity in order to guide them to olfactory and vomeronasal sensory neurons. Up to now, a largely unattended and unanswered question is how the secretions of the LNG migrate between the glandular opening at the upper edge of the anterior lateral nasal wall and the more caudally located vomeronasal organ. In order to address this issue, the functional morphology of the rostral nasal cavity of Sorex araneus was investigated histologically. Special interest was laid on the opening region of the LNG in the vestibular region of the nose and its topological connection to a hitherto largely unnoticed nasal concha, the atrioturbinate. It appears that the atrioturbinate serves as a specialised channel that directs the secretions of the LNG pointedly towards the entrance of the vomeronasal organ. In addition, it was observed that—contrary to previous reports—the LNG in Sorex araneus is anatomically clearly separated from the maxillary sinus gland and does not invade the maxillary sinus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams DR (1982) Hamster nasal glands: their structure, sialic acid content and vulnerability to actinomycin D. J Morph 174:79–94

    Article  CAS  PubMed  Google Scholar 

  • Adams DR (1992) Fine structure of the vomeronasal and septal olfactory epithelia and of glandular structures. Microsc Res Tech 23:86–97

    Article  CAS  PubMed  Google Scholar 

  • Adams DR, McFarland LZ (1972) Morphology of the nasal fossae and associated structures of the hamster (Mesocricetus auratus). J Morph 137:161–180

    Article  CAS  PubMed  Google Scholar 

  • Ärnbäck-Christie-Linde A (1907) Der Bau der Soriciden und ihre Beziehungen zu andern Säugetieren. Morph Jb 36:465–514

    Google Scholar 

  • Bast TH (1924) The maxillary sinus of the dog, with special reference to certain new structures, probably sensory in nature. Am J Anat 33:449–483

    Article  Google Scholar 

  • Bojsen-Møller F (1964) Topography of the nasal glands in rats and some other mammals. Anat Rec 150:11–24

    Article  PubMed  Google Scholar 

  • Brittebo EB (1997) Metabolism-dependent activation and toxicity of chemicals in nasal glands. Mutat Res 380:61–75

    Article  CAS  PubMed  Google Scholar 

  • Broman I (1921) Über die Entwickelung der konstanten grösseren Nasenhöhlendrüsen der Nagetiere. Z Anat Entwicklungsgesch 60:439–586

    Article  Google Scholar 

  • De Beer GR (1929) The development of the skull of the shrew. Phil Transact Roy Soc Lond 217:411–480

    Article  Google Scholar 

  • Dear TN, Campbell K, Rabbitts TH (1991) Molecular cloning of putative odorant-binding and odorant-metabolizing proteins. Biochem 30:10376–10382

    Article  CAS  Google Scholar 

  • Grosser O (1913) Die Glandula nasalis lateralis und das Nasoturbinale beim Menschen. Anat Anz 43:172–183

    Google Scholar 

  • Kangro C (1928) Beiträge zur Frage des Vorkommens und der Bedeutung der Stenoschen lateralen Nasendrüse der Säugetiere sowie der Drüsen des Sinus maxillaris. Anat Embryol 85:376–399

    Google Scholar 

  • Klaassen ABM, Kuijpers W, Denucé JM (1981) Morphological and histochemical aspects of the nasal glands in the rat. Anat Anz 149:51–63

    CAS  PubMed  Google Scholar 

  • Ko HJ, Lee SH, Oh EH, Park TH (2010) Specificity of odorant-binding proteins: a factor influencing the sensitivity of olfactory receptor-based biosensors. Bioprocess Biosyst Eng 33:55–62

    Article  CAS  PubMed  Google Scholar 

  • Kratzing JE (1984) The structure and distribution of nasal glands in four marsupial species. J Anat 139:553–564

    PubMed  PubMed Central  Google Scholar 

  • Kratzing JE, Woodall PF (1988) The rostral nasal anatomy of two elephant shrews. J Anat 157:135–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuramoto K, Nishida T, Mochizuki K (1985) Morphological study on the nasal turbinates (conchae) of the pika (Ochotona rufescens rufescens) and the volcano rabbit (Romerolagus diazi). Zbl Vet Med C Anat Histol Embryol 14:332–341

    Article  CAS  Google Scholar 

  • Löbel D, Strotmann J, Jacob M, Breer H (2001) Identification of a third rat odorant-binding protein (OBP3). Chem Senses 26:673–680

    Article  PubMed  Google Scholar 

  • Matthes E (1934) Geruchsorgan. In: Bolk L, Göppert E, Kallius E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere 2. Urban und Schwarzenberg, Berlin/Wien, pp 879–948

    Google Scholar 

  • Meredith M, Marques DM, O’Connell RJ, Stern FL (1980) Vomeronasal pump: significance for male hamster sexual behavior. Science 207:1224–1226

    Article  CAS  PubMed  Google Scholar 

  • Meyer W (1904) Beiträge zur Kenntnis der Anatomie und Histologie der lateralen Nasendrüse. Anat Anz 24:369–381

    Google Scholar 

  • Mihalkovics Vv (1898) Nasenhöhle und Jacobsonsches Organ. Anat Hefte 11:3–107

    Google Scholar 

  • Moe H, Bojsen-Møller F (1971) The fine structure of the lateral nasal gland (Steno’s gland) of the rat. J Ultrastruct Res 36:127–148

    Article  CAS  PubMed  Google Scholar 

  • Nowack C (2011) Functional anatomy of the lateral nasal gland in anuran amphibians and its relation to the vomeronasal organ. J Herpetol (in press)

  • Nowack C, Wöhrmann-Repenning A (2010) The nasolacrimal duct of anuran amphibians: suggestions on its functional role in vomeronasal perception. J Anat 216:510–517

    Article  PubMed Central  PubMed  Google Scholar 

  • Ohno K, Kawasaki Y, Kubo T, Tohyama M (1996) Differential expression of odorant-binding protein genes in rat nasal glands: implications for odorant-binding proteinII as possible pheromone transporter. Neurosci 71:355–366

    Article  CAS  Google Scholar 

  • Pelosi P (2001) The role of perireceptor events in vertebrate olfaction. Cell Mol Life Sci 58:503–509

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P, Baldaccini NE, Pisanelli AM (1982) Identification of a specific olfactory receptor for 2-isobutyl-3-methoxypyrazine. Biochem J 201:245–248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pes D, Mameli M, Andreini I, Krieger J, Weber M, Breer H, Pelosi P (1998) Cloning and expression of odorant-binding proteins Ia and Ib from mouse nasal tissue. Gene 212:49–55

    Article  CAS  PubMed  Google Scholar 

  • Peter K (1912) Die Entwicklung der Nasenmuscheln bei Mensch und Säugetieren. Arch Mikrosk Anat 79:427–464

    Article  Google Scholar 

  • Pevsner J, Snyder SH (1990) Odorant-binding protein: odorant transport function in the vertebrate nasal epithelium. Chem Sens 15:217–222

    Article  Google Scholar 

  • Pevsner J, Hwang PM, Sklar PB, Venable JC, Syder SH (1988) Odorant-binding protein and its mRNA are localized to lateral nasal gland implying a carrier function. Proc Natl Acad Sci 85:2383–2387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rama Krishna NS, Getchell ML, Getchell TV (1994) Expression of the putative pheromone and odorant transporter vomeromodulin mRNA and protein in nasal chemosensory mucosae. J Neurosci Res 39:243–259

    Article  Google Scholar 

  • Seydel O (1891) Über die Nasenhöhle der höheren Säugetiere und des Menschen. Morph Jb 17:44–99

    Google Scholar 

  • Söllner B, Kraft R (1980) Anatomie und Histologie der Nasenhöhle der Europäischen Wasserspitzmaus, Neomys fodiens (Pennant 1771), und anderer mitteleuropäischer Soriciden. Spixiana 3:251–272

    Google Scholar 

  • Tegoni M, Pelosi P, Vincent F et al (2000) Mammalian odorant binding proteins. Biochim Biophys Acta 1482:229–240

    Article  CAS  PubMed  Google Scholar 

  • Vidić B, Greditzer HG (1971) The histochemical and microscopical differentiation of the respiratory glands around the maxillary sinus of the rat. Am J Anat 132:491–514

    Article  PubMed  Google Scholar 

  • Weber M (1904) Die Säugetiere Band 1: Anatomischer Teil. Gustav Fischer, Jena

    Google Scholar 

  • Wells U, Widdicombe JG (1986) Lateral nasal gland secretion in the anaesthetized dog. J Physiol 374:359–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wöhrmann-Repenning A (1975) Zur vergleichenden makro- und mikroskopischen Anatomie der Nasenhöhle europäischer Insektivoren. Gegenbaurs morph Jahrb 121:698–756

    Google Scholar 

  • Zuckerkandl E (1887) Das periphere Geruchsorgan der Säugetiere. Eine vergleichend-anatomische Studie. Vdm Verlag Dr. Müller, Saarbrücken

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Schäfer for her constant support of our work. Further thanks to S. Jordan and C. Wittmer for the helpful discussions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Nowack.

Additional information

Communicated by: Jan M. Wójcik

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowack, C., Wöhrmann-Repenning, A. New ways to go—nasal floor structures as channelling system for vomeronasal stimuli in the shrew (Sorex araneus, Mammalia). Acta Theriol 56, 359–365 (2011). https://doi.org/10.1007/s13364-011-0041-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-011-0041-1

Keywords

Navigation