Identification and Quantitation of Linear Alkanes in Lubricant Base Oils by Using GC×GC/EI TOF Mass Spectrometry

  • Jeremy Manheim
  • Katherine Wehde
  • Wan Tang Jeff Zhang
  • Petr Vozka
  • Mark Romanczyk
  • Gozdem Kilaz
  • Hilkka I. KenttämaaEmail author
Research Article


Linear alkanes are a class of compounds known to negatively affect the physical performance of lubricant base oils. The ability to rapidly identify and quantify linear alkanes in lubricant base oils would enable oil companies to more effectively evaluate their refinery methods for converting crude oil to lubricant base oils. While mass spectrometry is a powerful method for elucidation of the structures of compounds in complex mixtures, it is not innately quantitative. An approach is presented here for the identification and quantitation of linear alkanes in base oil samples by utilizing GC×GC/EI TOF MS. Identification of the linear alkanes in base oils was achieved based on their retention times in both GC columns as well as their EI mass spectra. Linear alkane model compound mixtures were used to generate calibration plots for quantitation of the linear alkanes in the base oils. The accuracy of this method was greater than 83.8%, within-day precision lower than 6.2%, between-day precision lower than 16.2%, and total precision lower than 17.2%. All noted figures of merit surpass the acceptable limits for a new validated quantitative method, where accuracy must be better than 80% and precision lower than 20% at the lower limit of quantitation. The n-alkane content in both base oil samples was further validated using a GC×GC/FID method (the gold standard for quantitation), which provided nearly identical results to those obtained using the GC×GC/EI TOF MS method. Therefore, GC×GC/EI TOF MS can be used to both identify and quantitate linear alkanes.


GC×GC-TOF MS Base oils Linear alkanes APCI-MS 

Supplementary material

13361_2019_2336_MOESM1_ESM.docx (821 kb)
ESM 1 (DOCX 821 kb)


  1. 1.
    Wooler, E.: Observations on the testing of lubricants. SAE Trans. 25, 491–498 (1930)Google Scholar
  2. 2.
    Mistry, R., Maynus, R.: Crucial for rotating machines: types and properties of lubricants and proper lubrication methods. IEEE Ind. Appl. Mag. 6, 10–18 (2016)CrossRefGoogle Scholar
  3. 3.
    Duan, P., Qian, K., Habicht, S.C., Pinkston, D.S., Fu, M., Kenttämaa, H.I.: Analysis of base oil fractions by ClMn(H2O)+ chemical ionization combined with laser-induced acoustic desorption/Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 80, 1847–1853 (2008)CrossRefGoogle Scholar
  4. 4.
    Kramer, D.C.; Ziemer, J.N.; Cheng, M.T.; Fry, C.E.; Reynolds, R.N.; Lok, B.K.; Sztenderowicz, M.L.; Krug, R.R. Influence of group II & III base oil composition on VI and oxidation stability. NLGI spokesman. 1–36 (1999)Google Scholar
  5. 5.
    Shugarman, A.L.: Lubricant base oils: analysis and characterization of. In: Encyclopedia of Analytical Chemistry. John Wiley & Sons, New York City (2006)Google Scholar
  6. 6.
    Weijun, W., Jun, L., Yifeng, H., Hongwei, S., Songbai, T., Hui, Z.: Influence of different hydrocarbon molecules on physical properties of mineral base oils. China Pet. Proc. PE. 19, 33–45 (2017)Google Scholar
  7. 7.
    Rhodes, G., Opsal, R.B., Meek, J.T., Reilly, J.P.: Analysis of polyaromatic hydrocarbon mixtures with laser ionization gas chromatography/mass spectrometry. Anal. Chem. 55, 280–286 (1983)CrossRefGoogle Scholar
  8. 8.
    Ventura, G.T., Kenig, F., Reddy, C.M., Frysinger, G.S., Nelson, R.K., Mooy, B.V., Gaines, R.B.: Analysis of unresolved complex mixtures of hydrocarbons extracted from late Archean sediments by comprehensive two-dimensional gas chromatography (GC×GC). Org. Geochem. 39, 846–867 (2008)CrossRefGoogle Scholar
  9. 9.
    Fredericks, E.M., Brooks, F.R.: Gas chromatography analysis of gaseous hydrocarbons by gas-liquid partition chromatography. Anal. Chem. 28, 297–303 (1956)CrossRefGoogle Scholar
  10. 10.
    Ray, N.H.: Gas chromatography. I. The separation and estimation of volatile organic compounds by gas-liquid partition chromatography. J. Appl. Chem. 4, 21–25 (1954)CrossRefGoogle Scholar
  11. 11.
    Isaacman, G., Wilson, K.R., Chan, A.W.H., Worton, D.R., Kimmel, J.R., Nah, T., Hohaus, T., Gonin, M., Kroll, J.H., Worsnop, D.R., Goldstein, A.H.: Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using gas chromatography-vacuum ultraviolet-mass spectrometry. Anal. Chem. 84, 2335–2342 (2012)CrossRefGoogle Scholar
  12. 12.
    Sťávová, J., Stahl, D.C., Seames, W.S., Kubátová, A.: Method development for the characterization of biofuel intermediate products using gas chromatography with simultaneous mass spectrometric and flame ionization detections. J. Chrom. A. 1224, 79–88 (2012)CrossRefGoogle Scholar
  13. 13.
    Downing, D.T., Kranz, Z.H., Murray, K.E.: Studies in waxes. XIV. An investigation of the aliphatic constituents of hydrolysed wool wax by gas chromatography. Aust. J. Chem. 13, 80–94 (1960)CrossRefGoogle Scholar
  14. 14.
    Ventura, G.T., Raghuraman, B., Nelson, R.K., Mullins, O.C., Reddy, C.M.: Compound class oil fingerprinting techniques using comprehensive two-dimensional gas chromatography (GC×GC). Org. Geochem. 41, 1026–1035 (2010)CrossRefGoogle Scholar
  15. 15.
    Wang, F.C.-Y., Zhang, L.: Chemical composition of group II lubricant oil studied by high-resolution gas chromatography and comprehensive two-dimensional gas chromatography. Energy Fuel. 21, 3477–3483 (2007)CrossRefGoogle Scholar
  16. 16.
    Jennerwein, M.K., Eschner, M., Gröger, T., Wilharm, T., Zimmermann, R.: Complete group-type quantification of petroleum middle distillates based on comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS) and visual basic scripting. Energy Fuel. 28, 5670–5681 (2014)CrossRefGoogle Scholar
  17. 17.
    Mao, D., Weghe, H.V.D., Lookman, R., Vanermen, G., Brucker, N.D., Diels, L.: Resolving the unresolved complex mixture in motor oils using high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography. Fuel. 88, 312–318 (2009)CrossRefGoogle Scholar
  18. 18.
    Genuit, W., Chaabani, H.: Comprehensive two-dimensional gas chromatography-field ionization time-of-flight mass spectrometry (GCxGC-FI-TOFMS) for detailed hydrocarbon middle distillate analysis. Int. J. of Mass. Spectrom. 413, 27–32 (2017)CrossRefGoogle Scholar
  19. 19.
    Li, S., Cao, J., Hu, S.: Analyzing hydrocarbon fractions in crude oils by two-dimensional gas chromatography/time-of-flight mass spectrometry under reversed-phase column system. Fuel. 15, 191–199 (2015)CrossRefGoogle Scholar
  20. 20.
    Zhang, W., Zhu, S., He, S., Wang, Y.: Screening of oil sources by using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry and multivariate statistical analysis. J Chrom. A. 1380, 162–170 (2015)CrossRefGoogle Scholar
  21. 21.
    Liang, Z., Chen, L., Alam, M.S., Zeraati Rezaei, S., Stark, C., Xu, H., Harrison, R.M.: Comprehensive chemical characterization of lubricating oils used in modern vehicular engines utilizing GC × GC-TOFMS. Fuel. 220, 792–799 (2018)CrossRefGoogle Scholar
  22. 22.
    Hourani, N., Muller, H., Adam, F.M., Panda, S.K., Witt, M., Al-Hajji, A.A., Sarathy, S.M.: Structural level characterization of base oils using advanced analytical techniques. Energy Fuel. 29, 2962–2970 (2015)CrossRefGoogle Scholar
  23. 23.
    Mao, D., Lookman, R., Weghe, H.V.D., Weltens, R., Vanermen, G., Brucker, N.D., Diels, L.: Combining HPLC-GCXGC, GCXGC/ToF-MS, and selected ecotoxicity assays for detailed monitoring of petroleum hydrocarbon degradation in soil and leaching water. Environ. Sci. Technol. 43, 7651–7657 (2009)CrossRefGoogle Scholar
  24. 24.
    Coutinho, D.M., França, D., Vanini, G., Mendes, L.A.N., Gomes, A.O., Pereira, V.B., Ávila, B.M.F., Azevedo, D.A.: Rapid hydrocarbon group-type semi-quantification in crude oils by comprehensive two-dimensional gas chromatography. Fuel. 220, 379–388 (2018)CrossRefGoogle Scholar
  25. 25.
    Prak, D.J.L., Romanczyk, M., Wehde, K.E., Ye, S., McLaughlin, M., Prak, P.J.L., Foley, M.P., Kenttämaa, H.I., Trulove, P.C., Kilaz, G., Xu, L., Cowart, J.S.: Analysis of catalytic hydrothermal conversion jet fuel and surrogate mixture formulation: components, properties, and combustion. Energy Fuel. 31, 13802–13814 (2017)CrossRefGoogle Scholar
  26. 26.
    Rambla-Alegre, M., Esteve-Romero, J., Carda-Broch, S.: Is it really necessary to validate an analytical method or not? That is the question. J. Chrom. A. 1232, 101–109 (2012)CrossRefGoogle Scholar
  27. 27.
    Shah, V.P., Midha, K.K., Findlay, J.W.A., Hill, H.M., Hulse, J.D., McGilveray, I.J., McKay, G., Miller, K.J., Patnaik, R.N., Powell, M.L., Tonelli, A., Viswanathan, C.T., Yacobi, A.: Bioanalytical method validation—a revisit with a decade of Progress. Pharm. Res. 17, 1551–1557 (2000)CrossRefGoogle Scholar
  28. 28.
    Dietzel, K.D., Campbell, J.L., Bartlett, M.G., Witten, M.L., Fisher, J.W.: Validation of a gas chromatography/mass spectrometry method for the quantification of aerosolized jet propellant 8. J. Chrom. A. 1093, 11–20 (2005)CrossRefGoogle Scholar
  29. 29.
    Krouwer, J.S., Rabinowitz, R.: How to improve estimates of imprecision. Clin. Chem. 30, 290–292 (1984)Google Scholar
  30. 30.
    Jin, C., Viidanoja, J., Li, M., Zhang, Y., Ikonen, E., Root, A., Romanczyk, M., Manheim, J., Dziekonski, E., Kenttämaa, H.I.: Comparison of atmospheric pressure chemical ionization and field ionization mass spectrometry for the analysis of large saturated hydrocarbons. Anal. Chem. 88, 10592–10598 (2016)CrossRefGoogle Scholar
  31. 31.
    Smith, L.L., Strickland, J.R.: Improved GC/MS method for quantitation of n-alkanes in plant and fecal material. J. Agr. Food. Chem. 55, 7301–7307CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.School of Engineering TechnologyPurdue UniversityWest LafayetteUSA

Personalised recommendations