Lipid Alterations during Zebrafish Embryogenesis Revealed by Dynamic Mass Spectrometry Profiling with C=C Specificity


Lipids exert substantial influences on vertebrate embryogenesis, but their metabolic dynamics at detailed structural levels remains elusive, primarily owing to the lack of a tool capable of resolving their huge structural diversity. Herein, we present the first large-scale and spatiotemporal monitoring of unsaturated lipids with C=C specificity in single developing zebrafish embryos enabled by photochemical derivatization and tandem mass spectrometry (MS). The lipid isomer composition was found extremely stable in yolk throughout embryogenesis, while notable differences in ratios of C=C location (e.g., PC 16:0_16:1 (7) vs. 16:0_16:1 (9)) and fatty acyl composition isomers (e.g., PC 16:1_18:1 vs. 16:0_18:2) were unveiled between blastomeres and yolk from zygote to 4 h post fertilization (hpf). From 24 hpf onwards, lipid isomer compositions in embryo head and tail evolved distinctively with development, suggesting a meticulously regulated lipid remodeling essential for cell division and differentiation. This work has laid the foundation for functional studies of structurally defined lipids in vertebrate embryology.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Figure 1
Figure 2
Figure 3
Figure 4


  1. 1.

    van Meer, G., Voelker, D.R., Feigenson, G.W.: Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008)

  2. 2.

    Sturmey, R.G., Reis, A., Leese, H.J., McEvoy, T.G.: Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod. Domest. Anim. 44(Suppl 3), 50–58 (2009)

  3. 3.

    Elouarrat, D., van der Velden, Y.U., Jones, D.R., Moolenaar, W.H., Divecha, N., Haramis, A.P.: Role of phosphatidylinositol 5-phosphate 4-kinase alpha in zebrafish development. Int. J. Biochem. Cell Biol. 45, 1293–1301 (2013)

  4. 4.

    Bieberich, E.: Ceramide in stem cell differentiation and embryo development: novel functions of a topological cell-signaling lipid and the concept of ceramide compartments. J. Lipids. 2011, 610306 (2011)

  5. 5.

    Ferreira, C.R., Saraiva, S.A., Catharino, R.R., Garcia, J.S., Gozzo, F.C., Sanvido, G.B., Santos, L.F., Lo Turco, E.G., Pontes, J.H., Basso, A.C., Bertolla, R.P., Sartori, R., Guardieiro, M.M., Perecin, F., Meirelles, F.V., Sangalli, J.R., Eberlin, M.N.: Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res. 51, 1218–1227 (2010)

  6. 6.

    Gonzalez-Serrano, A.F., Pirro, V., Ferreira, C.R., Oliveri, P., Eberlin, L.S., Heinzmann, J., Lucas-Hahn, A., Niemann, H., Cooks, R.G.: Desorption electrospray ionization mass spectrometry reveals lipid metabolism of individual oocytes and embryos. PLoS One. 8, e74981 (2013)

  7. 7.

    Ferreira, C.R., Jarmusch, A.K., Pirro, V., Alfaro, C.M., Gonzalez-Serrano, A.F., Niemann, H., Wheeler, M.B., Rabel, R.A., Hallett, J.E., Houser, R., Kaufman, A., Cooks, R.G.: Ambient ionisation mass spectrometry for lipid profiling and structural analysis of mammalian oocytes, preimplantation embryos and stem cells. Reprod. Fertil. Dev. 27, 621–637 (2015)

  8. 8.

    Tian, H., Fletcher, J.S., Thuret, R., Henderson, A., Papalopulu, N., Vickerman, J.C., Lockyer, N.P.: Spatiotemporal lipid profiling during early embryo development of Xenopus laevis using dynamic ToF-SIMS imaging. J. Lipid Res. 55, 1970–1980 (2014)

  9. 9.

    Rustam, Y.H., Reid, G.E.: Analytical challenges and recent advances in mass spectrometry based lipidomics. Anal. Chem. 90, 374–397 (2018)

  10. 10.

    Porta Siegel, T., Ekroos, K., Ellis, S.R.: Reshaping lipid biochemistry by pushing barriers in structural lipidomics. Angew. Chem. Int. Ed. 58, 6492–6501 (2019)

  11. 11.

    Williams, P.E., Klein, D.R., Greer, S.M., Brodbelt, J.S.: Pinpointing double bond and sn-positions in glycerophospholipids via hybrid 193 nm ultraviolet photodissociation (UVPD) mass spectrometry. J. Am. Chem. Soc. 139, 15681–15690 (2017)

  12. 12.

    Paine, M.R.L., Poad, B.L.J., Eijkel, G.B., Marshall, D.L., Blanksby, S.J., Heeren, R.M.A., Ellis, S.R.: Mass spectrometry imaging with isomeric resolution enabled by ozone-induced dissociation. Angew. Chem. Int. Ed. 57, 10530–10534 (2018)

  13. 13.

    Deng, J., Yang, Y., Liu, Y., Fang, L., Lin, L., Luan, T.: Coupling Paterno-Buchi reaction with surface-coated probe nanoelectrospray ionization mass spectrometry for in vivo and microscale profiling of lipid C=C location isomers in complex biological tissues. Anal. Chem. 91, 4592–4599 (2019)

  14. 14.

    Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M., Churcher, C., Scott, C., Barrett, J.C., Koch, R., Rauch, G.J., White, S., Chow, W., Kilian, B., Quintais, L.T., Guerra-Assuncao, J.A., Zhou, Y., Gu, Y., Yen, J., Vogel, J.H., Eyre, T., Redmond, S., Banerjee, R., Chi, J., Fu, B., Langley, E., Maguire, S.F., Laird, G.K., Lloyd, D., Kenyon, E., Donaldson, S., Sehra, H., Almeida-King, J., Loveland, J., Trevanion, S., Jones, M., Quail, M., Willey, D., Hunt, A., Burton, J., Sims, S., McLay, K., Plumb, B., Davis, J., Clee, C., Oliver, K., Clark, R., Riddle, C., Elliot, D., Threadgold, G., Harden, G., Ware, D., Begum, S., Mortimore, B., Kerry, G., Heath, P., Phillimore, B., Tracey, A., Corby, N., Dunn, M., Johnson, C., Wood, J., Clark, S., Pelan, S., Griffiths, G., Smith, M., Glithero, R., Howden, P., Barker, N., Lloyd, C., Stevens, C., Harley, J., Holt, K., Panagiotidis, G., Lovell, J., Beasley, H., Henderson, C., Gordon, D., Auger, K., Wright, D., Collins, J., Raisen, C., Dyer, L., Leung, K., Robertson, L., Ambridge, K., Leongamornlert, D., McGuire, S., Gilderthorp, R., Griffiths, C., Manthravadi, D., Nichol, S., Barker, G., Whitehead, S., Kay, M., Brown, J., Murnane, C., Gray, E., Humphries, M., Sycamore, N., Barker, D., Saunders, D., Wallis, J., Babbage, A., Hammond, S., Mashreghi-Mohammadi, M., Barr, L., Martin, S., Wray, P., Ellington, A., Matthews, N., Ellwood, M., Woodmansey, R., Clark, G., Cooper, J., Tromans, A., Grafham, D., Skuce, C., Pandian, R., Andrews, R., Harrison, E., Kimberley, A., Garnett, J., Fosker, N., Hall, R., Garner, P., Kelly, D., Bird, C., Palmer, S., Gehring, I., Berger, A., Dooley, C.M., Ersan-Urun, Z., Eser, C., Geiger, H., Geisler, M., Karotki, L., Kirn, A., Konantz, J., Konantz, M., Oberlander, M., Rudolph-Geiger, S., Teucke, M., Lanz, C., Raddatz, G., Osoegawa, K., Zhu, B., Rapp, A., Widaa, S., Langford, C., Yang, F., Schuster, S.C., Carter, N.P., Harrow, J., Ning, Z., Herrero, J., Searle, S.M., Enright, A., Geisler, R., Plasterk, R.H., Lee, C., Westerfield, M., de Jong, P.J., Zon, L.I., Postlethwait, J.H., Nusslein-Volhard, C., Hubbard, T.J., Roest Crollius, H., Rogers, J., Stemple, D.L.: The zebrafish reference genome sequence and its relationship to the human genome. Nature. 496, 498–503 (2013)

  15. 15.

    MacRae, C.A., Peterson, R.T.: Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 14, 721–731 (2015)

  16. 16.

    Roscioli, T., Kamsteeg, E.J., Buysse, K., Maystadt, I., van Reeuwijk, J., van den Elzen, C., van Beusekom, E., Riemersma, M., Pfundt, R., Vissers, L.E., Schraders, M., Altunoglu, U., Buckley, M.F., Brunner, H.G., Grisart, B., Zhou, H., Veltman, J.A., Gilissen, C., Mancini, G.M., Delree, P., Willemsen, M.A., Ramadza, D.P., Chitayat, D., Bennett, C., Sheridan, E., Peeters, E.A., Tan-Sindhunata, G.M.: de Die-Smulders, C.E., Devriendt, K., Kayserili, H., El-Hashash, O.A., Stemple, D.L., Lefeber, D.J., Lin, Y.Y., van Bokhoven, H.: Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of alpha-dystroglycan. Nat. Genet. 44, 581–585 (2012)

  17. 17.

    Golzio, C., Willer, J., Talkowski, M.E., Oh, E.C., Taniguchi, Y., Jacquemont, S., Reymond, A., Sun, M., Sawa, A., Gusella, J.F., Kamiya, A., Beckmann, J.S., Katsanis, N.: KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature. 485, 363–367 (2012)

  18. 18.

    Tobin, D.M., Roca, F.J., Oh, S.F., McFarland, R., Vickery, T.W., Ray, J.P., Ko, D.C., Zou, Y., Bang, N.D., Chau, T.T., Vary, J.C., Hawn, T.R., Dunstan, S.J., Farrar, J.J., Thwaites, G.E., King, M.C., Serhan, C.N., Ramakrishnan, L.: Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell. 148, 434–446 (2012)

  19. 19.

    Bakkers, J.: Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc. Res. 91, 279–288 (2011)

  20. 20.

    Gut, P., Reischauer, S., Stainier, D.Y.R., Arnaout, R.: Little fish, big data: zebrafish as a model for cardiovascular and metabolic disease. Physiol. Rev. 97, 889–938 (2017)

  21. 21.

    Farrell, J.A., Wang, Y., Riesenfeld, S.J., Shekhar, K., Regev, A., Schier, A.F.: Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science. 360, 6392, eaar3131 (2018)

  22. 22.

    Wagner, D.E., Weinreb, C., Collins, Z.M., Briggs, J.A., Megason, S.G., Klein, A.M.: Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science. 360, 981–987 (2018)

  23. 23.

    Lucitt, M.B., Price, T.S., Pizarro, A., Wu, W., Yocum, A.K., Seiler, C., Pack, M.A., Blair, I.A., Fitzgerald, G.A., Grosser, T.: Analysis of the zebrafish proteome during embryonic development. Mol. Cell. Proteomics. 7, 981–994 (2008)

  24. 24.

    Holtta-Vuori, M., Salo, V.T., Nyberg, L., Brackmann, C., Enejder, A., Panula, P., Ikonen, E.: Zebrafish: gaining popularity in lipid research. Biochem. J. 429, 235–242 (2010)

  25. 25.

    Anderson, J.L., Carten, J.D., Farber, S.A.: Zebrafish lipid metabolism: from mediating early patterning to the metabolism of dietary fat and cholesterol. Methods Cell Biol. 101, 111–141 (2011)

  26. 26.

    Miyares, R.L., de Rezende, V.B., Farber, S.A.: Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipid transport and metabolism. Dis. Model. Mech. 7, 915–927 (2014)

  27. 27.

    Zeituni, E.M., Farber, S.A.: Studying lipid metabolism and transport during zebrafish development. Methods Mol. Biol. 1451, 237–255 (2016)

  28. 28.

    Dutta, A., Sinha, D.K.: Zebrafish lipid droplets regulate embryonic ATP homeostasis to power early development. Open Biol. 7, (2017)

  29. 29.

    Yao, Y., Sun, S., Wang, J., Fei, F., Dong, Z., Ke, A.W., He, R., Wang, L., Zhang, L., Ji, M.B., Li, Q., Yu, M., Shi, G.M., Fan, J., Gong, Z., Wang, X.: Canonical Wnt signaling remodels lipid metabolism in zebrafish hepatocytes following Ras oncogenic insult. Cancer Res. 78, 5548–5560 (2018)

  30. 30.

    Fraher, D., Sanigorski, A., Mellett, N.A., Meikle, P.J., Sinclair, A.J., Gibert, Y.: Zebrafish embryonic lipidomic analysis reveals that the yolk cell is metabolically active in processing lipid. Cell Rep. 14, 1317–1329 (2016)

  31. 31.

    Duenas, M.E., Essner, J.J., Lee, Y.J.: 3D MALDI mass spectrometry imaging of a single cell: spatial mapping of lipids in the embryonic development of zebrafish. Sci. Rep. 7, 14946 (2017)

  32. 32.

    Pirro, V., Guffey, S.C., Sepulveda, M.S., Mahapatra, C.T., Ferreira, C.R., Jarmusch, A.K., Cooks, R.G.: Lipid dynamics in zebrafish embryonic development observed by DESI-MS imaging and nanoelectrospray-MS. Mol. BioSyst. 12, 2069–2079 (2016)

  33. 33.

    Babin, P.J., Thisse, C., Durliat, M., Andre, M., Akimenko, M.-A., Thisse, B.: Both apolipoprotein E and A-I genes are present in a nonmammalian vertebrate and are highly expressed during embryonic development. Proc. Natl. Acad. Sci. U. S. A. 94, 8622–8627 (1997)

  34. 34.

    Otis, J.P., Zeituni, E.M., Thierer, J.H., Anderson, J.L., Brown, A.C., Boehm, E.D., Cerchione, D.M., Ceasrine, A.M., Avraham-Davidi, I., Tempelhof, H., Yaniv, K., Farber, S.A.: Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake. Dis. Model. Mech. 8, 295–309 (2015)

  35. 35.

    Büchi, G., Inman, C.G., Lipinsky, E.S.: Light-catalyzed organic reactions. I. The reaction of carbonyl compounds with 2-methyl-2-butene in the presence of ultraviolet light. J. Am. Chem. Soc. 76, 4327–4331 (1954)

  36. 36.

    Ma, X., Xia, Y.: Pinpointing double bonds in lipids by Paterno-Buchi reactions and mass spectrometry. Angew. Chem. Int. Ed. 53, 2592–2596 (2014)

  37. 37.

    Ma, X., Chong, L., Tian, R., Shi, R., Hu, T.Y., Ouyang, Z., Xia, Y.: Identification and quantitation of lipid C=C location isomers: a shotgun lipidomics approach enabled by photochemical reaction. Proc. Natl. Acad. Sci. U. S. A. 113, 2573–2578 (2016)

  38. 38.

    Bednarik, A., Bolsker, S., Soltwisch, J., Dreisewerd, K.: An on-tissue Paterno-Buchi reaction for localization of carbon-carbon double bonds in phospholipids and glycolipids by matrix-assisted laser-desorption-ionization mass-spectrometry imaging. Angew. Chem. Int. Ed. 57, 12092–12096 (2018)

  39. 39.

    Zhang, W., Zhang, D., Chen, Q., Wu, J., Ouyang, Z., Xia, Y.: Online photochemical derivatization enables comprehensive mass spectrometric analysis of unsaturated phospholipid isomers. Nat. Commun. 10, 79 (2019)

  40. 40.

    Xu, T., Pi, Z., Song, F., Liu, S., Liu, Z.: Benzophenone used as the photochemical reagent for pinpointing C=C locations in unsaturated lipids through shotgun and liquid chromatography-mass spectrometry approaches. Anal. Chim. Acta. 1028, 32–44 (2018)

  41. 41.

    Jeck, V., Korf, A., Vosse, C., Hayen, H.: Localization of double-bond positions in lipids by tandem mass spectrometry succeeding high-performance liquid chromatography with post-column derivatization. Rapid Commun. Mass Spectrom. 33, 86–94 (2019)

  42. 42.

    Esch, P., Heiles, S.: Charging and charge switching of unsaturated lipids and apolar compounds using Paterno-Buchi reactions. J. Am. Soc. Mass Spectrom. 29, 1971–1980 (2018)

  43. 43.

    Waldchen, F., Becher, S., Esch, P., Kompauer, M., Heiles, S.: Selective phosphatidylcholine double bond fragmentation and localisation using Paterno-Buchi reactions and ultraviolet photodissociation. Analyst. 142, 4744–4755 (2017)

  44. 44.

    Korf, A., Jeck, V., Schmid, R., Helmer, P.O., Hayen, H.: Lipid species annotation at double bond position level with custom databases by extension of the MZmine 2 open-source software package. Anal. Chem. 91, 5098–5105 (2019)

  45. 45.

    Wäldchen, F., Spengler, B., Heiles, S.: Reactive matrix-assisted laser desorption/ionization mass spectrometry imaging using an intrinsically photoreactive Paternò–Büchi matrix for double-bond localization in isomeric phospholipids. J. Am. Chem. Soc. 141, 11816–11820 (2019)

  46. 46.

    Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F.: Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995)

  47. 47.

    Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959)

  48. 48.

    Ren, J., Franklin, E.T., Xia, Y.: Uncovering structural diversity of unsaturated fatty acyls in cholesteryl esters via photochemical reaction and tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1432–1441 (2017)

  49. 49.

    Marshall, D.L., Criscuolo, A., Young, R.S.E., Poad, B.L.J., Zeller, M., Reid, G.E., Mitchell, T.W., Blanksby, S.J.: Mapping unsaturation in human plasma lipids by data-independent ozone-induced dissociation. J. Am. Soc. Mass Spectrom. 30 (9), 1621–1630 (2019)

  50. 50.

    Guijas, C., Meana, C., Astudillo, A.M., Balboa, M.A., Balsinde, J.: Foamy monocytes are enriched in cis-7-hexadecenoic fatty acid (16:1n-9), a possible biomarker for early detection of cardiovascular disease. Cell Chem. Biol. 23, 689–699 (2016)

  51. 51.

    Ma, W., Wu, J.H., Wang, Q., Lemaitre, R.N., Mukamal, K.J., Djoussé, L., King, I.B., Song, X., Biggs, M.L., Delaney, J.A., Kizer, J.R., Siscovick, D.S., Mozaffarian, D.: Prospective association of fatty acids in the de novo lipogenesis pathway with risk of type 2 diabetes: the Cardiovascular Health Study. Amer. J. Clin. Nutri. 101, 153–163 (2014)

  52. 52.

    Dai, L., Gonçalves, C.M.V., Lin, Z., Huang, J., Lu, H., Yi, L., Liang, Y., Wang, D., An, D.: Exploring metabolic syndrome serum free fatty acid profiles based on GC–SIM–MS combined with random forests and canonical correlation analysis. Talanta. 135, 108–114 (2015)

  53. 53.

    Houten, S.M., Wanders, R.J.: A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J. Inherit. Metab. Dis. 33, 469–477 (2010)

Download references


We acknowledge Simin Cheng for her help on the LC-PB-MS/MS platform. This research was financially supported by the National Natural Science Foundation of China (Grants 21705091, 21621003, and 21727813) and the Ministry of Science and Technology of the People’s Republic of China (Grant 2016YFF0100301).

Author information

Correspondence to Xiaoxiao Ma.

Ethics declarations

Fish maintenance and embryo raising followed the ethical guidelines of the Tsinghua University Animal Care and Use Committee.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material


(DOCX 10.1 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Chen, J., Zhang, W. et al. Lipid Alterations during Zebrafish Embryogenesis Revealed by Dynamic Mass Spectrometry Profiling with C=C Specificity. J. Am. Soc. Mass Spectrom. 30, 2646–2654 (2019).

Download citation


  • Zebrafish embryogenesis
  • Lipid remodeling
  • C=C location isomers
  • Mass spectrometry
  • Photochemical derivatization