Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Discrimination of Regioisomeric and Stereoisomeric Saponins from Aesculus hippocastanum Seeds by Ion Mobility Mass Spectrometry

Abstract

Modern mass spectrometry methods provide a huge benefit to saponin structural characterization, especially when combined with collision-induced dissociation experiments to obtain a partial description of the saponin (ion) structure. However, the complete description of the structures of these ubiquitous secondary metabolites remain challenging, especially since isomeric saponins presenting small differences are often present in a single extract. As a typical example, the horse chestnut triterpene glycosides, the so-called escins, comprise isomeric saponins containing subtle differences such as cis-trans ethylenic configuration (stereoisomers) of a side chain or distinct positions of an acetyl group (regioisomers) on the aglycone. In the present paper, the coupling of liquid chromatography and ion mobility mass spectrometry has been used to distinguish regioisomeric and stereoisomeric saponins. Ion mobility arrival time distributions (ATDs) were recorded for the stereoisomeric and regioisomeric saponin ions demonstrating that isomeric saponins can be partially separated using ion mobility on a commercially available traveling wave ion mobility (TWIMS) mass spectrometer. Small differences in the ATD can only be monitored when the isomeric saponins are separated with liquid chromatography prior to the IM-MS analysis. However, gas phase separation between stereoisomeric and regioisomeric saponin ions can be successfully realized, without any LC separation, on a cyclic ion mobility-enabled quadrupole time-of-flight (Q-cIM-oaToF) mass spectrometer. The main outcome of the present paper is that the structural analysis of regioisomeric and stereoisomeric natural compounds that represents a real challenge can take huge advantages of ion mobility experiments but only if increased ion mobility resolution is attainable.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Scheme 3

References

  1. 1.

    Lorent, J.H., Quetin-Leclercq, J., Mingeot-Leclercq, M.P.: The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells. Org. Biomol. Chem. 12, 8803–8822 (2014)

  2. 2.

    Segal, R., Schlösser, E.: Role of glycosidases in the membranlytic, antifungal action of saponins. Arch. Microbiol. 104, 147–150 (1974)

  3. 3.

    Podolak, I., Galanty, A., Sobolewska, D.: Saponins as cytotoxic agents : a review. Phytochem. Rev. 9, 425–474 (2010)

  4. 4.

    Vincken, J.P., Heng, L., de Groot, A., Gruppen, H.: Saponins, classification and occurrence in the plant kingdom. Phytochemistry. 68, 275–297 (2007)

  5. 5.

    Sparg, S.G., Light, M.E., Van Staden, J.: Biological activities and distribution of plant saponins. J. Ethnopharmacol. 94, 219–243 (2004)

  6. 6.

    Madl, T., Sterk, H., Mittelbach, M., Rechberger, G.N.: Tandem mass spectrometric analysis of a complex triterpene saponin mixture of Chenopodium quinoa. J. Am. Soc. Mass Spectrom. 17, 795–806 (2006)

  7. 7.

    Bahrami, Y., Zhang, W., Franco, M.M.: C.: Distribution of saponins in the Sea Cucumber Holothuria lessoni; the body wall versus the viscera, and their biological activities. Mar. Drugs. 16, 423 (2018)

  8. 8.

    Yamanouchi, T.: On the poisonous substance contained in holothurians. Seto. Mar. Biol. Lab. 4, 183–203 (1995)

  9. 9.

    Caulier, G., Mezali, K., Soualili, D.L., Decroo, C., Demeyer, M., Eeckhaut, I., Gerbaux, P., Flammang, P.: Chemical characterization of saponins contained in the body wall and the Cuvierian tubules of the sea cucumber Holothuria (Platyperona) sanctori (Delle Chiaje, 1823). Biochem. Syst. Ecol. 68, 119–127 (2016)

  10. 10.

    Kitagawa, I., Kobayashi, M.: On the structure of the major saponin from the starfish Acanthaster Planci. Tetrahedron Lett. 18, 859–862 (1977)

  11. 11.

    Demeyer, M., De Winter, J., Caulier, G., Eeckhaut, I., Flammang, P., Gerbaux, P.: Molecular diversity and body distribution of saponins in the sea star Asterias rubens by mass spectrometry. Comp. Biochem. Physiol. B. 168, 1–11 (2014)

  12. 12.

    Palagiano, E., Zollo, F., Minale, L., Iorizzi, M., Bryan, P., McClintock, J., Hopkins, T.: Isolation of 20 glycosides from the starfish Henricia downeyae, collected in the Gulf of Mexico. J. Nat. Prod. 59, 348–354 (1996)

  13. 13.

    Maier, M.S.: Biological activities of sulfated glycosides from echinoderms. Stud. Nat. Prod. Chem. 35, 311–354 (2008)

  14. 14.

    D’Auria, M.V., Minale, L., Riccio, R.: Polyoxygenated steroids of marine origin. Chem. Rev. 93, 1839–1895 (1993)

  15. 15.

    Van Dyck, S., Gerbaux, P., Flammang, P.: Qualitative and quantitative saponin contents in five sea cucumbers from the Indian ocean. Mar. Drugs. 8, 173–189 (2010)

  16. 16.

    Van Dyck, S., Gerbaux, P., Flammang, P.: Elucidation of molecular diversity and body distribution of saponins in the sea cucumber Holothuria forskali (Echinodermata) by mass spectrometry. Comp. Biochem. Physiol. B. 152, 124–134 (2009)

  17. 17.

    Shvartsburg, A.A., Jarrold, M.F.: An exact hard-spheres scattering model for the mobilities of polyatomic polyatomic ions. Chem. Phys. Lett. 261, 86–91 (1996)

  18. 18.

    Mesleh, M.F., Hunter, J.M., Shvartsburg, A.A., Schatz, G.C., Jarrold, M.F.: Structural information from ion mobility measurements: effects of the long-range potential. J. Phys. Chem. 100, 16082–16086 (1996)

  19. 19.

    Decroo, C., Colson, E., Lemaur, V., Caulier, G., De Winter, J., Cabrera-Barjas, G., Gerbaux, P.: Ion mobility mass spectrometry of saponin ions. Rapid Commun. Mass Spectrom. 33(S2), 22–33 (2019)

  20. 20.

    Decroo, C., Colson, E., Demeyer, M., Lemaur, V., Caulier, G., Eeckhaut, I., Gerbaux, P.: Tackling saponin diversity in marine animals by mass spectrometry: data acquisition and integration. Anal. Bioanal. Chem. 409, 3115–3126 (2017)

  21. 21.

    Patlolla, J.M.R., Rao, C.V.: Anti-inflammatory and anti-cancer properties of β-escin, a triterpene saponin. Curr. Pharmacol. Rep. 1, 170–178 (2015)

  22. 22.

    Abudayeh, Z.H.M., Al Azzam, K.M., Naddaf, A., Karpiuk, U.V., Kislichenko, V.S.: Determination of four major saponins in skin and endosperm of seeds of horse chestnut (Aesculus hippocastanum L.) using high performance liquid chromatography with positive confirmation by thin layer chromatography. Adv. Pharm. Bull. 5, 587–591 (2015)

  23. 23.

    Yoshikawa, M., Harada, E., Murakami, T., Matsuda, T., Wariishi, N., Yamahara, Y., Murakami, N., Kitagawa, I.: Escins-Ia, Ib, IIa, IIb, and IIIa, Bioactive triterpene oligoglycosides from the seeds of Aesculus hippocastanum L.: their inhibitory effects on ethanol absorption and hypoglycemic activity on glucose tolerance test. Chem. Pharm. Bull. 42, 1357–1359 (1994)

  24. 24.

    Yoshikawa, M., Murakami, T., Yamahara, J., Matsuda, H.: Bioactive saponins and glycosides. XII. Horse chestnut. (2): Structures of escins IIIb, IV, V, and VI and isoescins Ia, Ib, and V, acylated polyhydroxyoleanene triterpene oligoglycosides, from the seeds of horse chestnut tree (Aesculus hippocastanum L., Hippocastanaceae). Chem. Pharm. Bull. 46, 1764–1769 (1998)

  25. 25.

    Yoshikawa, M., Murakami, T., Yamahara, J., Matsuda, H.: Bioactive saponins and glycosides. III. Horse chestnut. (1): the structures, inhibitory effects on ethanol absorption, and hypoglycemic activity of escins Ia, Ib, IIa, IIb, and IIIa from the seeds of Aesculus hippocastanum L. Chem. Pharm. Bull. 44, 1754–1764 (1996)

  26. 26.

    Matsuda, H., Li, Y., Murakami, T., Ninomiya, K., Yamahara, J., Yoshikawa, M.: Effects of escins Ia, Ib, IIa, and IIb from horse chestnut, the seeds of Aesculus hippocastanum L., on acute inflammation in animals. Biol. Pharm. Bull. 20, 1092–1095 (1997)

  27. 27.

    Duez, Q., Chirot, F., Liénard, R., Josse, T., Choi, C.M., Coulembier, O., Dugourd, P., Cornil, J., Gerbaux, P., De Winter, J.: Polymers for traveling wave ion mobility spectrometry calibration. J. Am. Soc. Mass Spectrom. 28, 2483–2491 (2017)

  28. 28.

    Giles, K.; Ujma, J.; Wildgoose, J.; Green, M.; Richardson, K.; Langridge, D.; Tomczyk, N. Design and performance of a second-generation cyclic ion mobility enabled Q-TOF. June 6 (Poster Presentation). In: Proceedings of the 65th Conference on Mass Spectrometry and Allied Topics, Indianapolis in June 4–8 (2017);

  29. 29.

    Giles, K., Ujma, J., Wildgoose, J., Pringle, S., Richardson, K., Langridge, D., Green, M.: A cyclic ion mobility-mass spectrometry system. Anal. Chem. 91, 8564–8573 (2019)

  30. 30.

    Smith, D., Knapman, T., Campuzano, I., Malham, R., Berryman, J., Radford, S., Ashcroft, A.: Deciphering drift time measurements from travelling wave ion mobility spectrometry-mass spectrometry studies. Eur. J. Mass Spectrom. 15, 113 (2009)

  31. 31.

    Dodds, J.N., May, J.C., McLean, J.A.: Correlating resolving power, resolution, and collision cross section: unifying cross-platform assessment of separation efficiency in ion mobility spectrometry. Anal. Chem. 89, 12176–12184 (2017)

  32. 32.

    Giles, K., Williams, J.P., Campuzano, I.: Enhancements in travelling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25, 1559–1566 (2011)

  33. 33.

    Rathore, D., Dodds, E.D.: Collision-induced release, ion mobility separation, and amino acid sequence analysis of subunits from mass-selected noncovalent protein complexes. J. Am. Soc. Mass Spectrom. 25, 1600–1609 (2014)

Download references

Acknowledgements

The MS laboratory acknowledges the “Fonds de la Recherche Scientifique (FRS-FNRS)” for its contribution to the acquisition of the Waters QToF Premier and the Waters SYNAPT G2-Si mass spectrometers. P.F. is Research Director of the FRS-FNRS. E.C. and C.D. are grateful to the F.R.I.A. for the financial support.

Author information

Correspondence to Pascal Gerbaux.

Electronic Supplementary Material

ESM 1

(DOCX 2311 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Colson, E., Decroo, C., Cooper-Shepherd, D. et al. Discrimination of Regioisomeric and Stereoisomeric Saponins from Aesculus hippocastanum Seeds by Ion Mobility Mass Spectrometry. J. Am. Soc. Mass Spectrom. 30, 2228–2237 (2019). https://doi.org/10.1007/s13361-019-02310-7

Download citation

Keywords

  • Saponins
  • Ion mobility
  • Cyclic ion mobility
  • TWIMS
  • Stereoisomers
  • Regioisomers
  • Natural products
  • Escin