Advertisement

A Case Study to Identify the Drug Conjugation Site of a Site-Specific Antibody-Drug-Conjugate Using Middle-Down Mass Spectrometry

  • Oscar Hernandez-Alba
  • Stéphane Houel
  • Steve Hessmann
  • Stéphane Erb
  • David Rabuka
  • Romain Huguet
  • Jonathan Josephs
  • Alain Beck
  • Penelope M. Drake
  • Sarah CianféraniEmail author
Research Article

Abstract

Middle-down mass spectrometry (MD MS) has emerged as a promising alternative to classical bottom-up approaches for protein characterization. Middle-level experiments after enzymatic digestion are routinely used for subunit analysis of monoclonal antibody (mAb)-related compounds, providing information on drug load distribution and average drug-to-antibody ratio (DAR). However, peptide mapping is still the gold standard for primary amino acid sequence assessment, post-translational modifications (PTM), and drug conjugation identification and localization. However, peptide mapping strategies can be challenging when dealing with more complex and heterogeneous mAb formats, like antibody-drug conjugates (ADCs). We report here, for the first time, MD MS analysis of a third-generation site-specific DAR4 ADC using different fragmentation techniques, including higher-energy collisional- (HCD), electron-transfer (ETD) dissociation and 213 nm ultraviolet photodissociation (UVPD). UVPD used as a standalone technique for ADC subunit analysis afforded, within the same liquid chromatography-MS/MS run, enhanced performance in terms of primary sequence coverage compared to HCD- or ETD-based MD approaches, and generated substantially more MS/MS fragments containing either drug conjugation or glycosylation site information, leading to confident drug/glycosylation site identification. In addition, our results highlight the complementarity of ETD and UVPD for both primary sequence validation and drug conjugation/glycosylation site assessment. Altogether, our results highlight the potential of UVPD for ADC MD MS analysis for drug conjugation/glycosylation site assessment, and indicate that MD MS strategies can improve structural characterization of empowered next-generation mAb-based formats, especially for PTMs and drug conjugation sites validation.

Keywords

Middle-down mass spectrometry (MD MS) UVPD fragmentation ETD HCD Site-specific bioconjugation Antibody-drug conjugate (ADC) 

Abbreviations

ADC

Antibody-drug conjugate

CDR

Complementarity-determining region

CQA

Critical quality attribute

Cys

Cysteine

DAR

Drug-to-antibody ratio

DARav

Average drug-to-antibody ratio

DLD

Drug load distribution

DTT

Dithiothreitol

ETD

Electron transfer dissociation

Fc

Fragment crystallizable

fGly

Formylglycine

HCD

Higher-energy collisional dissociation

IdeS

Immunoglobulin-degrading enzyme from Streptococcus pyogenes

IgG

Immunoglobulin G

LC

Light chain

LC-MS/MS

Liquid chromatography-tandem mass spectrometry

mAb

Monoclonal antibody

MD

Middle-down

MS

Mass spectrometry

PTM

Post-translational modification

SMD

Small molecule drug

TD

Top-down

UVPD

Ultraviolet photodissociation

Notes

Acknowledgements

The authors would like to thank Région Alsace for financial support in purchasing an Orbitrap Exactive Plus EMR instrument, the CNRS, the University of Strasbourg, the “Agence Nationale de la Recherche” (ANR) and the French Proteomic Infrastructure (ProFI; ANR-10-INBS-08-03). O.A-H acknowledges the IdeX program of the University of Strasbourg for funding his postdoctoral fellowship.

Supplementary material

13361_2019_2296_MOESM1_ESM.docx (1.9 mb)
ESM 1 (DOCX 1954 kb)

References

  1. 1.
    Carter, P.J., Lazar, G.A.: Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat. Rev. Drug Discov. 17(3), 197–223 (2018)CrossRefGoogle Scholar
  2. 2.
    Beck, A., Goetsch, L., Dumontet, C., Corvaia, N.: Strategies and challenges for the next generation of antibody drug conjugates. Nat. Rev. Drug Discov. 16(5), 315–337 (2017)CrossRefGoogle Scholar
  3. 3.
    Beck, A., Terral, G., Debaene, F., Wagner-Rousset, E., Marcoux, J., Janin-Bussat, M.C., Colas, O., Van Dorsselaer, A., Cianferani, S.: Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev. Proteomics. 13(2), 157–183 (2016)CrossRefGoogle Scholar
  4. 4.
    Zhang, Z.Q., Pan, H., Chen, X.Y.: Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrom. Rev. 28(1), 147–176 (2009)CrossRefGoogle Scholar
  5. 5.
    Ren, D., Pipes, G.D., Liu, D.J., Shih, L.Y., Nichols, A.C., Treuheit, M.J., Brems, D.N., Bondarenko, P.V.: An improved trypsin digestion method minimizes digestion-induced modifications on proteins. Anal. Biochem. 392(1), 12–21 (2009)CrossRefGoogle Scholar
  6. 6.
    Krokhin, O.V., Antonovici, M., Ens, W., Wilkins, J.A., Standing, K.G.: Deamidation of -Asn-Gly-sequences during sample preparation for proteomics: consequences for MALDI and HPLC-MALDI analysis. Anal. Chem. 78(18), 6645–6650 (2006)CrossRefGoogle Scholar
  7. 7.
    Segu, Z.M., Mechref, Y.: Characterizing protein glycosylation sites through higher-energy C-trap dissociation. Rapid Commun. Mass Spectrom. 24(9), 1217–1225 (2010)CrossRefGoogle Scholar
  8. 8.
    Wuhrer, M., Catalina, M.I., Deelder, A.M., Hokke, C.H.: Glycoproteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr. B. 849(1), 115–128 (2007)CrossRefGoogle Scholar
  9. 9.
    Janin-Bussat, M.C., Dillenbourg, M., Corvaia, N., Beck, A., Klinguer-Hamour, C.: Characterization of antibody drug conjugate positional isomers at cysteine residues by peptide mapping LC-MS analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 981, 9–13 (2015)CrossRefGoogle Scholar
  10. 10.
    Wagner-Rousset, E., Janin-Bussat, M.C., Colas, O., Excoffier, M., Ayoub, D., Haeuw, J.F., Rilatt, I., Perez, M., Corvaia, N., Beck, A.: Antibody-drug conjugate model fast characterization by LC-MS following IdeS proteolytic digestion. Mabs. 6(1), 173–184 (2014)CrossRefGoogle Scholar
  11. 11.
    He, L.D., Anderson, L.C., Barnidge, D.R., Murray, D.L., Hendrickson, C.L., Marshall, A.G.: Analysis of monoclonal antibodies in human serum as a model for clinical monoclonal gammopathy by use of 21 Tesla FT-ICR top-down and middle-down MS/MS (vol 28, pg 827, 2017). J. Am. Soc. Mass Spectrom. 28(5), 839–839 (2017)CrossRefGoogle Scholar
  12. 12.
    Fornelli, L., Ayoub, D., Aizikov, K., Liu, X.W., Damoc, E., Pevzner, P.A., Makarov, A., Beck, A., Tsybin, Y.O.: Top-down analysis of immunoglobulin G isotypes 1 and 2 with electron transfer dissociation on a high-field orbitrap mass spectrometer. J. Proteome. 159, 67–76 (2017)CrossRefGoogle Scholar
  13. 13.
    Cotham, V.C., Brodbelt, J.S.: Characterization of therapeutic monoclonal antibodies at the subunit-level using middle-down 193 nm ultraviolet photodissociation. Anal. Chem. 88(7), 4004–4013 (2016)CrossRefGoogle Scholar
  14. 14.
    Tsybin, Y.O., Fornelli, L., Stoermer, C., Luebeck, M., Parra, J., Nallet, S., Wurm, F.M., Hartmer, R.: Structural analysis of intact monoclonal antibodies by electron transfer dissociation mass spectrometry. Anal. Chem. 83(23), 8919–8927 (2011)CrossRefGoogle Scholar
  15. 15.
    Han, X., Jin, M., Breuker, K., McLafferty, F.W.: Extending top-down mass spectrometry to proteins with masses greater than 200 kilodaltons. Science. 314(5796), 109–112 (2006)CrossRefGoogle Scholar
  16. 16.
    Mao, Y., Valeja, S.G., Rouse, J.C., Hendrickson, C.L., Marshall, A.G.: Top-down structural analysis of an intact monoclonal antibody by electron capture dissociation-Fourier transform ion cyclotron resonance-mass spectrometry. Anal. Chem. 85(9), 4239–4246 (2013)CrossRefGoogle Scholar
  17. 17.
    Fornelli, L., Damoc, E., Thomas, P.M., Kelleher, N.L., Aizikov, K., Denisov, E., Makarov, A., Tsybin, Y.O.: Analysis of intact monoclonal antibody IgG1 by electron transfer dissociation orbitrap FTMS. Mol. Cell. Proteomics. 11(12), 1758–1767 (2012)CrossRefGoogle Scholar
  18. 18.
    Chevreux, G., Tilly, N., Bihoreau, N.: Fast analysis of recombinant monoclonal antibodies using IdeS proteolytic digestion and electrospray mass spectrometry. Anal. Biochem. 415(2), 212–214 (2011)CrossRefGoogle Scholar
  19. 19.
    Fornelli, L., Ayoub, D., Aizikov, K., Beck, A., Tsybin, Y.O.: Middle-down analysis of monoclonal antibodies with electron transfer dissociation orbitrap Fourier transform mass spectrometry. Anal. Chem. 86(6), 3005–3012 (2014)CrossRefGoogle Scholar
  20. 20.
    Greer, S.M., Brodbelt, J.S.: Top-down characterization of heavily modified histones using 193 nm ultraviolet photodissociation mass spectrometry. J. Proteome Res. 17(3), 1138–1145 (2018)CrossRefGoogle Scholar
  21. 21.
    Cleland, T.P., DeHart, C.J., Fellers, R.T., VanNispen, A.J., Greer, J.B., Leduc, R.D., Parker, W.R., Thomas, P.M., Kelleher, N.L., Brodbelt, J.S.: High-throughput analysis of intact human proteins using UVPD and HCD on an orbitrap mass spectrometer. J. Proteome Res. 16(5), 2072–2079 (2017)CrossRefGoogle Scholar
  22. 22.
    Fornelli, L., Srzentić, K., Huguet, R., Mullen, C., Sharma, S., Zabrouskov, V., Fellers, R.T., Durbin, K.R., Compton, P.D., Kelleher, N.L.: Accurate sequence analysis of a monoclonal antibody by top-down and middle-down Orbitrap mass spectrometry applying multiple ion activation techniques. Anal. Chem. 90(14), 8421–8429 (2018)Google Scholar
  23. 23.
    Barfield, R.M., Rabuka, D.: Leveraging formylglycine-generating enzyme for production of site-specifically modified bioconjugates. In: Lemke, E.A. (ed.) Noncanonical amino acids: methods and protocols, pp. 3–16. Springer New York, New York (2018)CrossRefGoogle Scholar
  24. 24.
    Botzanowski, T., Erb, S., Hernandez-Alba, O., Ehkirch, A., Colas, O., Wagner-Rousset, E., Rabuka, D., Beck, A., Drake, P.M., Cianférani, S.: Insights from native mass spectrometry approaches for top- and middle- level characterization of site-specific antibody-drug conjugates. mAbs. 9(5), 801–811 (2017)CrossRefGoogle Scholar
  25. 25.
    Carapito, C., Lane, L., Benama, M., Opsomer, A., Mouton-Barbosa, E., Garrigues, L., de Peredo, A.G., Burel, A., Bruley, C., Gateau, A., Bouyssie, D., Jaquinod, M., Cianferani, S., Burlet-Schiltz, O., Van Dorsselaer, A., Garin, J., Vandenbrouck, Y.: Computational and mass-spectrometry-based workflow for the discovery and validation of missing human proteins: application to chromosomes 2 and 14. J. Proteome Res. 14(9), 3621–3634 (2015)CrossRefGoogle Scholar
  26. 26.
    Drake, P.M., Carlson, A., McFarland, J.M., Bañas, S., Barfield, R.M., Zmolek, W., Kim, Y.C., Huang, B.C.B., Kudirka, R., Rabuka, D.: CAT-02-106, a site-specifically conjugated anti-CD22 antibody bearing an MDR1-resistant maytansine payload yields excellent efficacy and safety in preclinical models. Mol. Cancer Ther. 17(1), 161–168 (2018)CrossRefGoogle Scholar
  27. 27.
    York, D., Baker, J., Holder, P.G., Jones, L.C., Drake, P.M., Barfield, R.M., Bleck, G.T., Rabuka, D.: Generating aldehyde-tagged antibodies with high titers and high formylglycine yields by supplementing culture media with copper(II). BMC Biotechnol. 16(1), 23 (2016)CrossRefGoogle Scholar
  28. 28.
    Kudirka, R.A., Barfield, R.M., McFarland, J.M., Drake, P.M., Carlson, A., Bañas, S., Zmolek, W., Garofalo, A.W., Rabuka, D.: Site-specific tandem Knoevenagel condensation–Michael addition to generate antibody–drug conjugates. ACS Med. Chem. Lett. 7(11), 994–998 (2016)CrossRefGoogle Scholar
  29. 29.
    Kudirka, R., Barfield, R.M., McFarland, J., Albers, A.E., de Hart, G.W., Drake, P.M., Holder, P.G., Banas, S., Jones, L.C., Garofalo, A.W., Rabuka, D.: Generating site-specifically modified proteins via a versatile and stable nucleophilic carbon ligation. Chem. Biol. 22(2), 293–298 (2015)CrossRefGoogle Scholar
  30. 30.
    Holder, P.G., Jones, L.C., Drake, P.M., Barfield, R.M., Bañas, S., de Hart, G.W., Baker, J., Rabuka, D.: Reconstitution of formylglycine-generating enzyme with copper(II) for aldehyde tag conversion. J. Biol. Chem. 290(25), 15730–15745 (2015)CrossRefGoogle Scholar
  31. 31.
    Agarwal, P., Kudirka, R., Albers, A.E., Barfield, R.M., de Hart, G.W., Drake, P.M., Jones, L.C., Rabuka, D.: Hydrazino-Pictet-Spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconjug. Chem. 24(6), 846–851 (2013)CrossRefGoogle Scholar
  32. 32.
    Rabuka, D., Rush, J.S., de Hart, G.W., Wu, P., Bertozzi, C.R.: Site-specific chemical protein conjugation using genetically encoded aldehyde tags. Nat. Protoc. 7, 1052 (2012)CrossRefGoogle Scholar
  33. 33.
    Sang, H., Lu, G., Liu, Y., Hu, Q., Xing, W., Cui, D., Zhou, F., Zhang, J., Hao, H., Wang, G., Ye, H.: Conjugation site analysis of antibody-drug-conjugates (ADCs) by signature ion fingerprinting and normalized area quantitation approach using nano-liquid chromatography coupled to high resolution mass spectrometry. Anal. Chim. Acta. 955, 67–78 (2017)CrossRefGoogle Scholar
  34. 34.
    Halim, M.A., MacAleese, L., Lemoine, J., Antoine, R., Dugourd, P., Girod, M.: Ultraviolet, infrared, and high-low energy photodissociation of post-translationally modified peptides. J. Am. Soc. Mass Spectrom. 29(2), 270–283 (2018)CrossRefGoogle Scholar
  35. 35.
    Olsen, J.V., Macek, B., Lange, O., Makarov, A., Horning, S., Mann, M.: Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods. 4, 709 (2007)CrossRefGoogle Scholar
  36. 36.
    Coon, J.J., Ueberheide, B., Syka, J.E.P., Dryhurst, D.D., Ausio, J., Shabanowitz, J., Hunt, D.F.: Protein identification using sequential ion/ion reactions and tandem mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 102(27), 9463–9468 (2005)CrossRefGoogle Scholar
  37. 37.
    Syka, J.E.P., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 101(26), 9528–9533 (2004)CrossRefGoogle Scholar
  38. 38.
    Srzentic, K., Nagornov, K.O., Fornelli, L., Lobas, A.A., Ayoub, D., Kozhinov, A.N., Gasilova, N., Menin, L., Beck, A., Gorshkov, M.V., Aizikov, K., Tsybin, Y.O.: Multiplexed middle-down mass spectrometry as a method for revealing light and heavy chain connectivity in a monoclonal antibody. Anal. Chem. 90(21), 12527–12535 (2018)CrossRefGoogle Scholar
  39. 39.
    Beck, A., Terral, G., Debaene, F., Wagner-Rousset, E., Marcoux, J., Janin-Bussat, M.-C., Colas, O., Dorsselaer, A.V., Cianférani, S.: Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev. Proteomics. 13(2), 157–183 (2016)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  • Oscar Hernandez-Alba
    • 1
  • Stéphane Houel
    • 2
  • Steve Hessmann
    • 1
  • Stéphane Erb
    • 1
  • David Rabuka
    • 3
  • Romain Huguet
    • 2
  • Jonathan Josephs
    • 2
  • Alain Beck
    • 4
  • Penelope M. Drake
    • 3
  • Sarah Cianférani
    • 1
    Email author
  1. 1.Laboratoire de Spectrométrie de Masse BioOrganique, CNRS IPHC UMR 7178Université de StrasbourgStrasbourgFrance
  2. 2.Thermo Fisher ScientificSan JoseUSA
  3. 3.Catalent Biologics WestCAUSA
  4. 4.IRPFCentre d’Immunologie Pierre-Fabre (CIPF)Saint-Julien-en-GenevoisFrance

Personalised recommendations