Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead

  • James N. Dodds
  • Erin S. BakerEmail author
Critical Insight


Ion mobility spectrometry (IMS) is a rapid separation technique that has experienced exponential growth as a field of study. Interfacing IMS with mass spectrometry (IMS-MS) provides additional analytical power as complementary separations from each technique enable multidimensional characterization of detected analytes. IMS separations occur on a millisecond timescale, and therefore can be readily nested into traditional GC and LC/MS workflows. However, the continual development of novel IMS methods has generated some level of confusion regarding the advantages and disadvantages of each. In this critical insight, we aim to clarify some common misconceptions for new users in the community pertaining to the fundamental concepts of the various IMS instrumental platforms (i.e., DTIMS, TWIMS, TIMS, FAIMS, and DMA), while addressing the strengths and shortcomings associated with each. Common IMS-MS applications are also discussed in this review, such as separating isomeric species, performing signal filtering for MS, and incorporating collision cross-section (CCS) values into both targeted and untargeted omics-based workflows as additional ion descriptors for chemical annotation. Although many challenges must be addressed by the IMS community before mobility information is collected in a routine fashion, the future is bright with possibilities.


Ion mobility spectrometry IMS Untargeted metabolomics Mass spectrometry 



Ion mobility spectrometry


Mass spectrometry


Drift tube ion mobility spectrometry


Traveling wave ion mobility spectrometry


Trapped ion mobility spectrometry


Field asymmetric waveform ion mobility spectrometry


Collision cross-section



This research was supported by the NIH National Institute of Environmental Health Sciences (P42 ES027704) and by startup funds from North Carolina State University.


  1. 1.
    Thomson, J.J., Rutherford, E.: On the passage of electricity through gases exposed to Röntgen rays. Philos. Mag. 42(258), 392–407 (1896)CrossRefGoogle Scholar
  2. 2.
    Mäkinen, M.A., Anttalainen, O.A., Sillanpää, M.E.T.: Ion mobility spectrometry and its applications in detection of chemical warfare agents. Anal. Chem. 82(23), 9594–9600 (2010)CrossRefPubMedGoogle Scholar
  3. 3.
    Ewing, R.G., Atkinson, D.A., Eiceman, G.A., Ewing, G.J.: A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta. 54(3), 515–529 (2001)CrossRefGoogle Scholar
  4. 4.
    Eiceman, G.A., Stone, J.A.: Peer reviewed: ion mobility spectrometers in national defense. Anal. Chem. 76(21), 390 A–397 A (2004)CrossRefGoogle Scholar
  5. 5.
    Kanu, A.B., Dwivedi, P., Tam, M., Matz, L., Hill, H.H.: Ion mobility–mass spectrometry. J. Mass Spectrom. 43(1), 1–22 (2008)CrossRefPubMedGoogle Scholar
  6. 6.
    McLean, J.A., Ruotolo, B.T., Gillig, K.J., Russell, D.H.: Ion mobility–mass spectrometry: a new paradigm for proteomics. Int. J. Mass Spectrom. 240(3), 301–315 (2005)CrossRefGoogle Scholar
  7. 7.
    Kliman, M., May, J.C., McLean, J.A.: Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim. Biophys. Acta. 1811(11), 935–945 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wyttenbach, T., Kemper, P.R., Bowers, M.T.: Design of a new electrospray ion mobility mass spectrometer. Int. J. Mass Spectrom. 212(1), 13–23 (2001)CrossRefGoogle Scholar
  9. 9.
    Wu, C., Siems, W.F., Asbury, G.R., Hill, H.H.: Electrospray ionization high-resolution ion mobility spectrometry−mass spectrometry. Anal. Chem. 70(23), 4929–4938 (1998)CrossRefPubMedGoogle Scholar
  10. 10.
    Pringle, S.D., Giles, K., Wildgoose, J.L., Williams, J.P., Slade, S.E., Thalassinos, K., Bateman, R.H., Bowers, M.T., Scrivens, J.H.: An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int. J. Mass Spectrom. 261(1), 1–12 (2007)CrossRefGoogle Scholar
  11. 11.
    Thalassinos, K., Grabenauer, M., Slade, S.E., Hilton, G.R., Bowers, M.T., Scrivens, J.H.: Characterization of phosphorylated peptides using traveling wave-based and drift cell ion mobility mass spectrometry. Anal. Chem. 81(1), 248–254 (2009)CrossRefPubMedGoogle Scholar
  12. 12.
    Chan, Y.-T., Li, X., Soler, M., Wang, J.-L., Wesdemiotis, C., Newkome, G.R.: Self-assembly and traveling wave ion mobility mass spectrometry analysis of hexacadmium macrocycles. J. Am. Chem. Soc. 131(45), 16395–16397 (2009)CrossRefPubMedGoogle Scholar
  13. 13.
    May, J.C., McLean, J.A.: Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal. Chem. 87(3), 1422–1436 (2015)CrossRefPubMedGoogle Scholar
  14. 14.
    Cumeras, R., Figueras, E., Davis, C.E., Baumbach, J.I., Gràcia, I.: Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst. 140(5), 1376–1390 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cumeras, R., Figueras, E., Davis, C.E., Baumbach, J.I., Gràcia, I.: Review on ion mobility spectrometry. Part 2: hyphenated methods and effects of experimental parameters. Analyst. 140(5), 1391–1410 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gabelica, V., Shvartsburg, A. A., Afonso, C., Barran, P. E., Benesch, J. L. P., Bleiholder, C., Bowers, M. T., Bilbao, A., Bush, M. F., Campbell, J. L., Campuzano, I. D. G., Causon, T. J., Clowers, B. H., Creaser, C., De Pauw, E., Far, J., Fernandez-Lima, F., Fjeldsted, J. C., Giles, K., Groessl, M., Hogan, Jr., C. J., Hann, S., Kim, H. I., Kurulugama, R. T., May, J. C., McLean, J. A., Pagel, K., Richardson, K., Ridgeway, M. E., Rosu, F., Sobott, F., Thalassinos, K., Valentine, S. J., Wyttenbach, T., Recommendations for reporting ion mobility mass spectrometry measurements. Mass. Spec. Rev. 38, 291–320 (2019)Google Scholar
  17. 17.
    Viehland, L.A., Mason, E.A.: Gaseous lon mobility in electric fields of arbitrary strength. Ann. Phys. 91(2), 499–533 (1975)CrossRefGoogle Scholar
  18. 18.
    Revercomb, H.E., Mason, E.A.: Theory of plasma chromatography/gaseous electrophoresis. Review. Anal. Chem. 47(7), 970–983 (1975)CrossRefGoogle Scholar
  19. 19.
    May, J.C., Goodwin, C.R., Lareau, N.M., Leaptrot, K.L., Morris, C.B., Kurulugama, R.T., Mordehai, A., Klein, C., Barry, W., Darland, E., Overney, G., Imatani, K., Stafford, G.C., Fjeldsted, J.C., McLean, J.A.: Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal. Chem. 86(4), 2107–2116 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mairinger, T., Causon, T.J., Hann, S.: The potential of ion mobility–mass spectrometry for non-targeted metabolomics. Curr. Opin. Chem. Biol. 42, 9–15 (2018)CrossRefPubMedGoogle Scholar
  21. 21.
    Jurneczko, E., Barran, P.E.: How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst. 136(1), 20–28 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    May, J.C., McLean, J.A.: A uniform field ion mobility study of melittin and implications of low-field mobility for resolving fine cross-sectional detail in peptide and protein experiments. Proteomics. 15(16), 2862–2871 (2015)CrossRefPubMedGoogle Scholar
  23. 23.
    Groessl, M., Graf, S., Knochenmuss, R.: High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst. 140(20), 6904–6911 (2015)CrossRefPubMedGoogle Scholar
  24. 24.
    Ahmed, A., Cho, Y.J., No, M.-h., Koh, J., Tomczyk, N., Giles, K., Yoo, J.S., Kim, S.: Application of the Mason−Schamp equation and ion mobility mass spectrometry to identify structurally related compounds in crude oil. Anal. Chem. 83(1), 77–83 (2011)CrossRefPubMedGoogle Scholar
  25. 25.
    Stow, S.M., Causon, T.J., Zheng, X., Kurulugama, R.T., Mairinger, T., May, J.C., Rennie, E.E., Baker, E.S., Smith, R.D., McLean, J.A., Hann, S., Fjeldsted, J.C.: An interlaboratory evaluation of drift tube ion mobility–mass spectrometry collision cross section measurements. Anal. Chem. 89(17), 9048–9055 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Allen, S.J., Bush, M.F.: Radio-frequency (rf) confinement in ion mobility spectrometry: apparent mobilities and effective temperatures. J. Am. Soc. Mass Spectrom. 27(12), 2054–2063 (2016)CrossRefPubMedGoogle Scholar
  27. 27.
    Clowers, B.H., Siems, W.F., Hill, H.H., Massick, S.M.: Hadamard transform ion mobility spectrometry. Anal. Chem. 78(1), 44–51 (2006)CrossRefPubMedGoogle Scholar
  28. 28.
    Prost, S.A., Crowell, K.L., Baker, E.S., Ibrahim, Y.M., Clowers, B.H., Monroe, M.E., Anderson, G.A., Smith, R.D., Payne, S.H.: Detecting and removing data artifacts in Hadamard transform ion mobility-mass spectrometry measurements. J. Am. Soc. Mass Spectrom. 25(12), 2020–2027 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Belov, M.E., Buschbach, M.A., Prior, D.C., Tang, K., Smith, R.D.: Multiplexed ion mobility spectrometry-orthogonal time-of-flight mass spectrometry. Anal. Chem. 79(6), 2451–2462 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Morrison, K.A., Siems, W.F., Clowers, B.H.: Augmenting ion trap mass spectrometers using a frequency modulated drift tube ion mobility spectrometer. Anal. Chem. 88(6), 3121–3129 (2016)CrossRefPubMedGoogle Scholar
  31. 31.
    Kanu, A.B., Gribb, M.M., Hill, H.H.: Predicting optimal resolving power for ambient pressure ion mobility spectrometry. Anal. Chem. 80(17), 6610–6619 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Siems, W.F., Wu, C., Tarver, E.E., Hill Jr., H.H., Larsen, P.R., McMinn, D.G.: Measuring the resolving power of ion mobility spectrometers. Anal. Chem. 66(23), 4195–4201 (1994)CrossRefGoogle Scholar
  33. 33.
    Tabrizchi, M.: Temperature effects on resolution in ion mobility spectrometry. Talanta. 62(1), 65–70 (2004)CrossRefPubMedGoogle Scholar
  34. 34.
    Kemper, P.R., Dupuis, N.F., Bowers, M.T.: A new, higher resolution, ion mobility mass spectrometer. Int. J. Mass Spectrom. 287(1), 46–57 (2009)CrossRefGoogle Scholar
  35. 35.
    Baker, E.S., Clowers, B.H., Li, F., Tang, K., Tolmachev, A.V., Prior, D.C., Belov, M.E., Smith, R.D.: Ion mobility spectrometry–mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures. J. Am. Soc. Mass Spectrom. 18(7), 1176–1187 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kirk, A.T., Raddatz, C.-R., Zimmermann, S.: Separation of isotopologues in ultra-high-resolution ion mobility spectrometry. Anal. Chem. 89(3), 1509–1515 (2017)CrossRefPubMedGoogle Scholar
  37. 37.
    Giles, K., Williams, J.P., Campuzano, I.: Enhancements in travelling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25(11), 1559–1566 (2011)CrossRefPubMedGoogle Scholar
  38. 38.
    Ansari, D., Andersson, R., Bauden, M.P., Andersson, B., Connolly, J.B., Welinder, C., Sasor, A., Marko-Varga, G.: Protein deep sequencing applied to biobank samples from patients with pancreatic cancer. J. Cancer Res. Clin. Oncol. 141(2), 369–380 (2015)CrossRefPubMedGoogle Scholar
  39. 39.
    Struwe, W.B., Benesch, J.L., Harvey, D.J., Pagel, K.: Collision cross sections of high-mannose N-glycans in commonly observed adduct states – identification of gas-phase conformers unique to [M − H]− ions. Analyst. 140(20), 6799–6803 (2015)CrossRefPubMedGoogle Scholar
  40. 40.
    Shvartsburg, A.A., Smith, R.D.: Fundamentals of traveling wave ion mobility spectrometry. Anal. Chem. 80(24), 9689–9699 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Morsa, D., Gabelica, V., De Pauw, E.: Fragmentation and isomerization due to field heating in traveling wave ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 25(8), 1384–1393 (2014)CrossRefPubMedGoogle Scholar
  42. 42.
    Morsa, D., Gabelica, V., De Pauw, E.: Effective temperature of ions in traveling wave ion mobility spectrometry. Anal. Chem. 83(14), 5775–5782 (2011)CrossRefPubMedGoogle Scholar
  43. 43.
    Merenbloom, S.I., Flick, T.G., Williams, E.R.: How hot are your ions in TWAVE ion mobility spectrometry? J. Am. Soc. Mass Spectrom. 23(3), 553–562 (2012)CrossRefPubMedGoogle Scholar
  44. 44.
    Forsythe, J.G., Petrov, A.S., Walker, C.A., Allen, S.J., Pellissier, J.S., Bush, M.F., Hud, N.V., Fernández, F.M.: Collision cross section calibrants for negative ion mode traveling wave ion mobility-mass spectrometry. Analyst. 140(20), 6853–6861 (2015)CrossRefPubMedGoogle Scholar
  45. 45.
    Bush, M.F., Campuzano, I.D.G., Robinson, C.V.: Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies. Anal. Chem. 84(16), 7124–7130 (2012)CrossRefPubMedGoogle Scholar
  46. 46.
    Gelb, A.S., Jarratt, R.E., Huang, Y., Dodds, E.D.: A study of calibrant selection in measurement of carbohydrate and peptide ion-neutral collision cross sections by traveling wave ion mobility spectrometry. Anal. Chem. 86(22), 11396–11402 (2014)CrossRefPubMedGoogle Scholar
  47. 47.
    Garimella, S.V.B., Ibrahim, Y.M., Webb, I.K., Ipsen, A.B., Chen, T.-C., Tolmachev, A.V., Baker, E.S., Anderson, G.A., Smith, R.D.: Ion manipulations in structures for lossless ion manipulations (SLIM): computational evaluation of a 90 ° turn and a switch. Analyst. 140(20), 6845–6852 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Giles, K., Ujma, J., Wildgoose, J., Pringle, S., Richardson, K., Langridge, D., Green, M.: A cyclic ion mobility-mass spectrometry system. Anal. Chem. (2019)Google Scholar
  49. 49.
    Deng, L., Ibrahim, Y.M., Baker, E.S., Aly, N.A., Hamid, A.M., Zhang, X., Zheng, X., Garimella, S.V.B., Webb, I.K., Prost, S.A., Sandoval, J.A., Norheim, R.V., Anderson, G.A., Tolmachev, A.V., Smith, R.D.: Ion mobility separations of isomers based upon long path length structures for lossless ion manipulations combined with mass spectrometry. ChemistrySelect. 1(10), 2396–2399 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Deng, L., Garimella, S.V.B., Hamid, A.M., Webb, I.K., Attah, I.K., Norheim, R.V., Prost, S.A., Zheng, X., Sandoval, J.A., Baker, E.S., Ibrahim, Y.M., Smith, R.D.: Compression ratio ion mobility programming (CRIMP) accumulation and compression of billions of ions for ion mobility-mass spectrometry using traveling waves in structures for lossless ion manipulations (SLIM). Anal. Chem. 89(12), 6432–6439 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Deng, L., Webb, I.K., Garimella, S.V.B., Hamid, A.M., Zheng, X., Norheim, R.V., Prost, S.A., Anderson, G.A., Sandoval, J.A., Baker, E.S., Ibrahim, Y.M., Smith, R.D.: Serpentine ultralong path with extended routing (SUPER) high resolution traveling wave ion mobility-MS using structures for lossless ion manipulations. Anal. Chem. 89(8), 4628–4634 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Michelmann, K., Silveira, J.A., Ridgeway, M.E., Park, M.A.: Fundamentals of trapped ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 26(1), 14–24 (2015)CrossRefPubMedGoogle Scholar
  53. 53.
    Hernandez, D.R., DeBord, J.D., Ridgeway, M.E., Kaplan, D.A., Park, M.A., Fernandez-Lima, F.: Ion dynamics in a trapped ion mobility spectrometer. Analyst. 139(8), 1913–1921 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ridgeway, M.E., Lubeck, M., Jordens, J., Mann, M., Park, M.A.: Trapped ion mobility spectrometry: a short review. Int. J. Mass Spectrom. 425, 22–35 (2018)CrossRefGoogle Scholar
  55. 55.
    Silveira, J.A., Ridgeway, M.E., Park, M.A.: High resolution trapped ion mobility spectrometery of peptides. Anal. Chem. 86(12), 5624–5627 (2014)CrossRefPubMedGoogle Scholar
  56. 56.
    Pu, Y., Ridgeway, M.E., Glaskin, R.S., Park, M.A., Costello, C.E., Lin, C.: Separation and identification of isomeric glycans by selected accumulation-trapped ion mobility spectrometry-electron activated dissociation tandem mass spectrometry. Anal. Chem. 88(7), 3440–3443 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Chai, M., Young, M.N., Liu, F.C., Bleiholder, C.: A transferable, sample-independent calibration procedure for trapped ion mobility spectrometry (TIMS). Anal. Chem. 90(15), 9040–9047 (2018)CrossRefPubMedGoogle Scholar
  58. 58.
    Liu, F.C., Ridgeway, M.E., Park, M.A., Bleiholder, C.: Tandem trapped ion mobility spectrometry. Analyst. 143(10), 2249–2258 (2018)CrossRefPubMedGoogle Scholar
  59. 59.
    Kolakowski, B.M., Mester, Z.: Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst. 132(9), 842–864 (2007)CrossRefPubMedGoogle Scholar
  60. 60.
    Guevremont, R.: High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. J. Chromatogr. A. 1058(1), 3–19 (2004)CrossRefPubMedGoogle Scholar
  61. 61.
    Cooper, H.J.: To what extent is FAIMS beneficial in the analysis of proteins? J. Am. Soc. Mass Spectrom. 27(4), 566–577 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Guevremont, R., Purves, R.W.: Atmospheric pressure ion focusing in a high-field asymmetric waveform ion mobility spectrometer. Rev. Sci. Instrum. 70(2), 1370–1383 (1999)CrossRefGoogle Scholar
  63. 63.
    Barnett, D.A., Belford, M., Dunyach, J.-J., Purves, R.W.: Characterization of a temperature-controlled FAIMS system. J. Am. Soc. Mass Spectrom. 18(9), 1653–1663 (2007)CrossRefPubMedGoogle Scholar
  64. 64.
    Krylova, N., Krylov, E., Eiceman, G.A., Stone, J.A.: Effect of moisture on the field dependence of mobility for gas-phase ions of organophosphorus compounds at atmospheric pressure with field asymmetric ion mobility spectrometry. J. Phys. Chem. A. 107(19), 3648–3654 (2003)CrossRefPubMedGoogle Scholar
  65. 65.
    Hatsis, P., Kapron, J.T.: A review on the application of high-field asymmetric waveform ion mobility spectrometry (FAIMS) in drug discovery. Rapid Commun. Mass Spectrom. 22(5), 735–738 (2008)CrossRefPubMedGoogle Scholar
  66. 66.
    Barnett, D.A., Ells, B., Guevremont, R., Purves, R.W.: Separation of leucine and isoleucine by electrospray ionization–high field asymmetric waveform ion mobility spectrometry–mass spectrometry. J. Am. Soc. Mass Spectrom. 10(12), 1279–1284 (1999)CrossRefGoogle Scholar
  67. 67.
    Kaszycki, J.L., Bowman, A.P., Shvartsburg, A.A.: Ion mobility separation of peptide Isotopomers. J. Am. Soc. Mass Spectrom. 27(5), 795–799 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    de la Mora, J.F., de Juan, L., Eichler, T., Rosell, J.: Differential mobility analysis of molecular ions and nanometer particles. TrAC Trends Anal. Chem. 17(6), 328–339 (1998)CrossRefGoogle Scholar
  69. 69.
    Pease, L.F., Elliott, J.T., Tsai, D.-H., Zachariah, M.R., Tarlov, M.J.: Determination of protein aggregation with differential mobility analysis: application to IgG antibody. Biotechnol. Bioeng. 101(6), 1214–1222 (2008)CrossRefPubMedGoogle Scholar
  70. 70.
    Hogan, C.J., de la Mora, J.F.: Ion mobility measurements of nondenatured 12–150 kDa proteins and protein multimers by tandem differential mobility analysis–mass spectrometry (DMA-MS). J. Am. Soc. Mass Spectrom. 22(1), 158–172 (2011)CrossRefPubMedGoogle Scholar
  71. 71.
    Fernández-García, J., Fernández de la Mora, J.: Measuring the effect of ion-induced drift-gas polarization on the electrical mobilities of multiply-charged ionic liquid nanodrops in air. J. Am. Soc. Mass Spectrom. 24(12), 1872–1889 (2013)CrossRefPubMedGoogle Scholar
  72. 72.
    Ouyang, H., Larriba-Andaluz, C., Oberreit, D.R., Hogan, C.J.: The collision cross sections of iodide salt cluster ions in air via differential mobility analysis-mass spectrometry. J. Am. Soc. Mass Spectrom. 24(12), 1833–1847 (2013)CrossRefPubMedGoogle Scholar
  73. 73.
    Morrison, L.J., Parker, W.R., Holden, D.D., Henderson, J.C., Boll, J.M., Trent, M.S., Brodbelt, J.S.: UVliPiD: a UVPD-based hierarchical approach for de novo characterization of lipid a structures. Anal. Chem. 88(3), 1812–1820 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Lareau, N.M., May, J.C., McLean, J.A.: Non-derivatized glycan analysis by reverse phase liquid chromatography and ion mobility-mass spectrometry. Analyst. 140(10), 3335–3338 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Dodds, J.N., May, J.C., McLean, J.A.: Investigation of the complete suite of the leucine and isoleucine isomers: toward prediction of ion mobility separation capabilities. Anal. Chem. 89(1), 952–959 (2017)CrossRefGoogle Scholar
  76. 76.
    Lippens, J.L., Ranganathan, S.V., D'Esposito, R.J., Fabris, D.: Modular calibrant sets for the structural analysis of nucleic acids by ion mobility spectrometry mass spectrometry. Analyst. 141(13), 4084–4099 (2016)CrossRefPubMedGoogle Scholar
  77. 77.
    Hofmann, J., Hahm, H.S., Seeberger, P.H., Pagel, K.: Identification of carbohydrate anomers using ion mobility–mass spectrometry. Nature. 526, 241 (2015)CrossRefPubMedGoogle Scholar
  78. 78.
    Pagel, K., Harvey, D.J.: Ion mobility–mass spectrometry of complex carbohydrates: collision cross sections of sodiated N-linked glycans. Anal. Chem. 85(10), 5138–5145 (2013)CrossRefPubMedGoogle Scholar
  79. 79.
    Kyle, J.E., Zhang, X., Weitz, K.K., Monroe, M.E., Ibrahim, Y.M., Moore, R.J., Cha, J., Sun, X., Lovelace, E.S., Wagoner, J., Polyak, S.J., Metz, T.O., Dey, S.K., Smith, R.D., Burnum-Johnson, K.E., Baker, E.S.: Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst. 141(5), 1649–1659 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Bowman, A.P., Abzalimov, R.R., Shvartsburg, A.A.: Broad separation of isomeric lipids by high-resolution differential ion mobility spectrometry with tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 28(8), 1552–1561 (2017)CrossRefPubMedGoogle Scholar
  81. 81.
    Nagy, G., Chouinard, C.D., Attah, I.K., Webb, I.K., Garimella, S. V.B., Ibrahim, Y.M., Baker, E.S., Smith, R.D.: Distinguishing enantiomeric amino acids with chiral cyclodextrin adducts and structures for lossless ion manipulations. Electrophoresis. 39, 3148–3155 (2018)Google Scholar
  82. 82.
    Domalain, V., Hubert-Roux, M., Tognetti, V., Joubert, L., Lange, C.M., Rouden, J., Afonso, C.: Enantiomeric differentiation of aromatic amino acids using traveling wave ion mobility-mass spectrometry. Chem. Sci. 5(8), 3234–3239 (2014)CrossRefGoogle Scholar
  83. 83.
    Zhang, J.D., Mohibul Kabir, K.M., Lee, H.E., Donald, W.A.: Chiral recognition of amino acid enantiomers using high-definition differential ion mobility mass spectrometry. Int. J. Mass Spectrom. 428, 1–7 (2018)CrossRefGoogle Scholar
  84. 84.
    May, J.C., Jurneczko, E., Stow, S.M., Kratochvil, I., Kalkhof, S., McLean, J.A.: Conformational landscapes of ubiquitin, cytochrome c, and myoglobin: uniform field ion mobility measurements in helium and nitrogen drift gas. Int. J. Mass Spectrom. 427, 79–90 (2018)CrossRefPubMedGoogle Scholar
  85. 85.
    Levin, D.S., Vouros, P., Miller, R.A., Nazarov, E.G.: Using a nanoelectrospray-differential mobility spectrometer-mass spectrometer system for the analysis of oligosaccharides with solvent selected control over ESI aggregate ion formation. J. Am. Soc. Mass Spectrom. 18(3), 502–511 (2007)CrossRefPubMedGoogle Scholar
  86. 86.
    Miller, R.A., Nazarov, E.G., Eiceman, G.A., Thomas King, A.: A MEMS radio-frequency ion mobility spectrometer for chemical vapor detection. Sensors Actuators A Phys. 91(3), 301–312 (2001)CrossRefGoogle Scholar
  87. 87.
    Kurulugama, R.T., Nachtigall, F.M., Lee, S., Valentine, S.J., Clemmer, D.E.: Overtone mobility spectrometry: Part 1. Experimental observations. J. Am. Soc. Mass Spectrom. 20(5), 729–737 (2009)CrossRefPubMedGoogle Scholar
  88. 88.
    Valentine, S.J., Stokes, S.T., Kurulugama, R.T., Nachtigall, F.M., Clemmer, D.E.: Overtone mobility spectrometry: Part 2. Theoretical considerations of resolving power. J. Am. Soc. Mass Spectrom. 20(5), 738–750 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Valentine, S.J., Kurulugama, R.T., Clemmer, D.E.: Overtone mobility spectrometry: Part 3. On the origin of peaks. J. Am. Soc. Mass Spectrom. 22(5), 804–816 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Bagag, A., Giuliani, A., Canon, F., Réfrégiers, M., Naour, F.L.: Separation of peptides from detergents using ion mobility spectrometry. Rapid Commun. Mass Spectrom. 25(22), 3436–3440 (2011)CrossRefPubMedGoogle Scholar
  91. 91.
    Hebert, A.S., Prasad, S., Belford, M.W., Bailey, D.J., McAlister, G.C., Abbatiello, S.E., Huguet, R., Wouters, E.R., Dunyach, J.-J., Brademan, D.R., Westphall, M.S., Coon, J.J.: Comprehensive single-shot proteomics with FAIMS on a hybrid orbitrap mass spectrometer. Anal. Chem. 90(15), 9529–9537 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Baker, E.S., Burnum-Johnson, K.E., Ibrahim, Y.M., Orton, D.J., Monroe, M.E., Kelly, R.T., Moore, R.J., Zhang, X., Theberge, R., Costello, C.E., Smith, R.D.: Enhancing bottom-up and top-down proteomic measurements with ion mobility separations. Proteomics. 15(16), 2766–2776 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Hengel, S.M., Floyd, E., Baker, E.S., Zhao, R., Wu, S., Pasa-Tolic, L.: Evaluation of SDS depletion using an affinity spin column and IMS-MS detection. Proteomics. 12(21), 3138–3142 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Gibson, C.L., Codreanu, S.G., Schrimpe-Rutledge, A.C., Retzlaff, C.L., Wright, J., Mortlock, D.P., Sherrod, S.D., McLean, J.A., Blakely, R.D.: Global untargeted serum metabolomic analyses nominate metabolic pathways responsive to loss of expression of the orphan metallo β-lactamase, MBLAC1. Mol. Omics. 14(3), 142–155 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Liang, Q., Liu, H., Zhang, T., Jiang, Y., Zhang, A.-H.: Untargeted lipidomics study of coronary artery disease by FUPLC-Q-TOF-MS. Anal. Methods. 8(6), 1229–1234 (2016)CrossRefGoogle Scholar
  96. 96.
    Hines, K.M., Ross, D.H., Davidson, K.L., Bush, M.F., Xu, L.: Large-scale structural characterization of drug and drug-like compounds by high-throughput ion mobility-mass spectrometry. Anal. Chem. 89(17), 9023–9030 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Zhou, Z., Xiong, X., Zhu, Z.-J.: MetCCS predictor: a web server for predicting collision cross-section values of metabolites in ion mobility-mass spectrometry based metabolomics. Bioinformatics. 33(14), 2235–2237 (2017)CrossRefPubMedGoogle Scholar
  98. 98.
    Zhou, Z., Tu, J., Xiong, X., Shen, X., Zhu, Z.-J.: LipidCCS: prediction of collision cross-section values for lipids with high precision to support ion mobility–mass spectrometry-based lipidomics. Anal. Chem. 89(17), 9559–9566 (2017)CrossRefPubMedGoogle Scholar
  99. 99.
    Soper-Hopper, M.T., Petrov, A.S., Howard, J.N., Yu, S.S., Forsythe, J.G., Grover, M.A., Fernández, F.M.: Collision cross section predictions using 2-dimensional molecular descriptors. Chem. Commun. 53(54), 7624–7627 (2017)CrossRefGoogle Scholar
  100. 100.
    Plante, P.-L., Francovic-Fontaine, É., May, J.C., McLean, J.A., Baker, E.S., Laviolette, F., Marchand, M., Corbeil, J.: Predicting ion mobility collision cross-sections using a deep neural network: deepCCS. Anal. Chem. 91(8), 5191–5199 (2019)CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Picache, J.A., Rose, B.S., Balinski, A., Leaptrot, K.L., Sherrod, S.D., May, J.C., McLean, J.A.: Collision cross section compendium to annotate and predict multi-omic compound identities. Chem. Sci. 10(4), 983–993 (2019)CrossRefPubMedGoogle Scholar
  102. 102.
    Dodds, J.N., May, J.C., McLean, J.A.: Correlating resolving power, resolution, and collision cross section: unifying cross-platform assessment of separation efficiency in ion mobility spectrometry. Anal. Chem. 89(22), 12176–12184 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Poltash, M.L., McCabe, J.W., Shirzadeh, M., Laganowsky, A., Clowers, B.H., Russell, D.H.: Fourier transform-ion mobility-orbitrap mass spectrometer: a next-generation instrument for native mass spectrometry. Anal. Chem. 90(17), 10472–10478 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Ibrahim, Y.M., Garimella, S.V.B., Prost, S.A., Wojcik, R., Norheim, R.V., Baker, E.S., Rusyn, I., Smith, R.D.: Development of an ion mobility spectrometry-orbitrap mass spectrometer platform. Anal. Chem. 88(24), 12152–12160 (2016)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryNorth Carolina State UniversityRaleighUSA

Personalised recommendations