Determination of Gas-Phase Ion Structures of Locally Polar Homopolymers Through High-Resolution Ion Mobility Spectrometry–Mass Spectrometry

  • Xi Chen
  • Shannon A. Raab
  • Timothy Poe
  • David E. Clemmer
  • Carlos Larriba-AndaluzEmail author
Focus: Ion Mobility Spectrometry (IMS): Research Article


The strong synergy arising from coupling two orthogonal analytical techniques such as ion mobility and mass spectrometry can be used to separate complex mixtures and determine structural information of analytes in the gas phase. A tandem study is performed using two systems with different gases and pressures to ascertain gas-phase conformations of homopolymer ions. Aside from spherical and stretched configurations, intermediate configurations formed by a multiply charged globule and a “bead-on-a-string” appendix are confirmed for polyethylene-glycol (PEG), polycaprolactone (PCL), and polydimethylsiloxane (PDMS). These intermediate configurations are shown to be ubiquitous for all charge states and masses present. For each charge state, configurations evolve in two distinctive patterns: an inverse evolution which occurs as an elementary charge attached to the polymer leaves the larger globule and incorporates itself into the appendage, and a forward evolution which reduces the globule without relinquishing a charge while leaving the appendix relatively constant. Forward evolutions are confirmed to form self-similar family shapes that transcend charge states for all polymers. Identical structural changes occur at the same mass over charge regardless of the system, gas or pressure strongly suggesting that conformations are only contingent on number of charges and chain length, and start arranging once the ion is at least partially ejected from the droplet, supporting a charge extrusion mechanism. Configurational changes are smoother for PDMS which is attributed to the larger steric hindrance caused by protruding pendant groups. This study has implications in the study of the configurational space of more complex homopolymers and heteropolymers.

Graphical Abstract


Ion Mobility Spectrometry IMS, polymer PEG PCL PDMS Homopolymer Mass Spectrometry IMS-MS drift tube DMA Structure Polyethylene-glycol Polycaprolactone Polydimethylsiloxane 

Supplementary material

13361_2019_2184_MOESM1_ESM.docx (36.7 mb)
ESM 1 (DOCX 37595 kb)


  1. 1.
    Ober, C.K.: Polymer science—shape persistence of synthetic polymers. Science. 288, 448–449 (2000)CrossRefGoogle Scholar
  2. 2.
    Frechet, J.M.J.: Functional polymers and dendrimers—reactivity, molecular architecture, and interfacial energy. Science. 263, 1710–1715 (1994)CrossRefGoogle Scholar
  3. 3.
    Forrest, S.R.: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature. 428, 911–918 (2004)CrossRefGoogle Scholar
  4. 4.
    Wang, J.Z., Tian, L., Argenti, A., Uhrich, K.E.: Nanoscale amphiphilic star-like macromolecules with carboxy-, methoxy- and amine-terminated chain ends. J. Bioact. Compat. Polym. 21, 297–313 (2006)CrossRefGoogle Scholar
  5. 5.
    Uhrich, K.E., Cannizzaro, S.M., Langer, R.S., Shakesheff, K.M.: Polymeric systems for controlled drug release. Chem. Rev. 99, 3181–3198 (1999)CrossRefGoogle Scholar
  6. 6.
    Aida, T., Meijer, E.W., Stupp, S.I.: Functional supramolecular polymers. Science. 335, 813–817 (2012)CrossRefGoogle Scholar
  7. 7.
    Stupp, S.I., LeBonheur, V., Walker, K., Li, L.S., Huggins, K.E., Keser, M., Amstutz, A.: Supramolecular materials: self-organized nanostructures. Science. 276, 384–389 (1997)CrossRefGoogle Scholar
  8. 8.
    Robinson, B.H.: E-waste: an assessment of global production and environmental impacts. Sci. Total Environ. 408, 183–191 (2009)CrossRefGoogle Scholar
  9. 9.
    Onuchic, J.N., LutheySchulten, Z., Wolynes, P.G.: Theory of protein folding: the energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997)CrossRefGoogle Scholar
  10. 10.
    Hawker, C.J., Wooley, K.L.: The convergence of synthetic organic and polymer chemistries. Science. 309, 1200–1205 (2005)CrossRefGoogle Scholar
  11. 11.
    Mansky, P., Liu, Y., Huang, E., Russell, T.P., Hawker, C.J.: Controlling polymer-surface interactions with random copolymer brushes. Science. 275, 1458–1460 (1997)CrossRefGoogle Scholar
  12. 12.
    Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007)CrossRefGoogle Scholar
  13. 13.
    Samori, P.: Scanning probe microscopies beyond imaging. J. Mater. Chem. 14, 1353–1366 (2004)CrossRefGoogle Scholar
  14. 14.
    Mann, S.: Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat. Mater. 8, 781–792 (2009)CrossRefGoogle Scholar
  15. 15.
    Howe, D.H., Hart, J.L., McDaniel, R.M., Taheri, M.L., Magenau, A.J.D.: Functionalization-induced self-assembly of block copolymers for nanoparticle synthesis. ACS Macro Lett. 7, 1503–1508 (2018)CrossRefGoogle Scholar
  16. 16.
    Rodriguez-Hernandez, J., Checot, F., Gnanou, Y., Lecommandoux, S.: Toward 'smart' nano-objects by self-assembly of block copolymers in solution. Prog. Polym. Sci. 30, 691–724 (2005)CrossRefGoogle Scholar
  17. 17.
    Hofmann, H., Soranno, A., Borgia, A., Gast, K., Nettels, D., Schuler, B.: Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy. P Natl Acad Sci USA. 109, 16155–16160 (2012)CrossRefGoogle Scholar
  18. 18.
    Janshoff, A., Neitzert, M., Oberdorfer, Y., Fuchs, H.: Force spectroscopy of molecular systems - single molecule spectroscopy of polymers and biomolecules. Angew. Chem. Int. Ed. 39, 3213–3237 (2000)Google Scholar
  19. 19.
    Quake, S.R., Babcock, H., Chu, S.: The dynamics of partially extended single molecules of DNA. Nature. 388, 151–154 (1997)CrossRefGoogle Scholar
  20. 20.
    Wang, M.D., Yin, H., Landick, R., Gelles, J., Block, S.M.: Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997)CrossRefGoogle Scholar
  21. 21.
    Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass-spectrometry of large biomolecules. Science. 246, 64–71 (1989)CrossRefGoogle Scholar
  22. 22.
    Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T., Matsuo, T.J.R.c.i.m.s.: Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. 2, 151–153 (1988)Google Scholar
  23. 23.
    Costello, C.E.: Time, life ... and mass spectrometry—new techniques to address biological questions. Biophys. Chem. 68, 173–188 (1997)CrossRefGoogle Scholar
  24. 24.
    Clemmer, D.E., Jarrold, M.F.: Ion mobility measurements and their applications to clusters and biomolecules. J. Mass Spectrom. 32, 577–592 (1997)CrossRefGoogle Scholar
  25. 25.
    Armenta, S., Alcala, M., Blanco, M.: A review of recent, unconventional applications of ion mobility spectrometry (IMS). Anal. Chim. Acta. 703, 114–123 (2011)CrossRefGoogle Scholar
  26. 26.
    Nohmi, T., Fenn, J.B.: Electrospray mass-spectrometry of poly(ethylene glycols) with molecular-weights up to 5 million. J. Am. Chem. Soc. 114, 3241–3246 (1992)CrossRefGoogle Scholar
  27. 27.
    Fenn, J.B.: Electrospray wings for molecular elephants (Nobel lecture). Angew. Chem. Int. Ed. 42, 3871–3894 (2003)CrossRefGoogle Scholar
  28. 28.
    Fenn, J.B., Rosell, J., Meng, C.K.: In electrospray ionization, how much pull does an ion need to escape its droplet prison? J. Am. Soc. Mass Spectrom. 8, 1147–1157 (1997)CrossRefGoogle Scholar
  29. 29.
    Wong, S.F., Meng, C.K., Fenn, J.B.: Multiple charging in electrospray ionization of poly(ethylene glycols). J Phys Chem-Us. 92, 546–550 (1988)CrossRefGoogle Scholar
  30. 30.
    Von Helden, G., Wyttenbach, T., Bowers, M.T.: Conformation of macromolecules in the gas-phase - use of matrix-assisted laser-desorption methods in ion chromatography. Science. 267, 1483–1485 (1995)CrossRefGoogle Scholar
  31. 31.
    Wyttenbach, T., von Helden, G., Bowers, M.T.: Conformations of alkali ion cationized polyethers in the gas phase: polyethylene glycol and bis[(benzo-15-crown-5)-15-ylmethyl] pimelate. Int. J. Mass Spectrom. 165, 377–390 (1997)CrossRefGoogle Scholar
  32. 32.
    Von Helden, G., Wyttenbach, T., Bowers, M.T.: Inclusion of a Maldi ion-source in the ion chromatography technique—conformational information on polymer and biomolecular ions. Int. J. Mass Spectrom. 146, 349–364 (1995)CrossRefGoogle Scholar
  33. 33.
    Gidden, J., Wyttenbach, T., Jackson, A.T., Scrivens, J.H., Bowers, M.T.: Gas-phase conformations of synthetic polymers: poly(ethylene glycol), poly(propylene glycol), and poly(tetramethylene glycol). J. Am. Chem. Soc. 122, 4692–4699 (2000)CrossRefGoogle Scholar
  34. 34.
    Ude, S., de la Mora, J.F., Thomson, B.A.: Charge-induced unfolding of multiply charged polyethylene glycol ions. J. Am. Chem. Soc. 126, 12184–12190 (2004)CrossRefGoogle Scholar
  35. 35.
    Trimpin, S., Clemmer, D.E.: Ion mobility spectrometry/mass spectrometry snapshots for assessing the molecular compositions of complex polymeric systems. Anal. Chem. 80, 9073–9083 (2008)CrossRefGoogle Scholar
  36. 36.
    Trimpin, S., Plasencia, M., Isailovic, D., Clemmer, D.E.: Resolving oligomers from fully grown polymers with IMS-MS. Anal. Chem. 79, 7965–7974 (2007)CrossRefGoogle Scholar
  37. 37.
    Larriba, C., de la Mora, J.F.: The gas phase structure of coulombically stretched polyethylene glycol ions. J. Phys. Chem. B. 116, 593–598 (2012)CrossRefGoogle Scholar
  38. 38.
    Larriba, C., Hogan, C.J.: Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models. J. Phys. Chem. A. 117, 3887–3901 (2013)CrossRefGoogle Scholar
  39. 39.
    Larriba, C. Ph. D. Dissertation, Yale University, New Haven, CT, (2010)Google Scholar
  40. 40.
    Iribarne, J., Thomson, B.: On the evaporation of small ions from charged droplets. 64, 2287–2294 (1976)Google Scholar
  41. 41.
    Dole, M., Mack, L.L., Hines, R.L., Mobley, R.C., Ferguson, L.D., Alice, M.B.: Molecular beams of macroions. 49, 2240–2249 (1968)Google Scholar
  42. 42.
    Hogan, C.J., de la Mora, J.F.: Tandem ion mobility-mass spectrometry (IMS-MS) study of ion evaporation from ionic liquid-acetonitrile nanodrops. Phys. Chem. Chem. Phys. 11, 8079–8090 (2009)CrossRefGoogle Scholar
  43. 43.
    Ahadi, E., Konermann, L.: Modeling the behavior of coarse-grained polymer chains in charged water droplets: implications for the mechanism of electrospray ionization. J. Phys. Chem. B. 116, 104–112 (2012)CrossRefGoogle Scholar
  44. 44.
    Konermann, L., Ahadi, E., Rodriguez, A.D., Vahidi, S.: Unraveling the mechanism of electrospray ionization. Anal. Chem. 85, 2–9 (2013)CrossRefGoogle Scholar
  45. 45.
    Duez, Q., Metwally, H., Konermann, L.: Electrospray ionization of polypropylene glycol: Rayleigh-charged droplets, competing pathways, and charge state-dependent conformations. Anal. Chem. 90, 9912–9920 (2018)CrossRefGoogle Scholar
  46. 46.
    Chung, J.K., Consta, S.: Release mechanisms of poly(ethylene glycol) macroions from aqueous charged nanodroplets. J. Phys. Chem. B. 116, 5777–5785 (2012)CrossRefGoogle Scholar
  47. 47.
    Consta, S., Chung, J.K.: Charge-induced conformational changes of PEG-(Na-n(+)) in a vacuum and aqueous nanodroplets. J. Phys. Chem. B. 115, 10447–10455 (2011)CrossRefGoogle Scholar
  48. 48.
    Consta, S., Malevanets, A.: Manifestations of charge induced instability in droplets effected by charged macromolecules. Phys. Rev. Lett. 109, (2012)Google Scholar
  49. 49.
    Consta, S., Malevanets, A.: Classification of the ejection mechanisms of charged macromolecules from liquid droplets. J. Chem. Phys. 138, (2013)Google Scholar
  50. 50.
    Larriba, C., de la Mora, J.F., Clemmer, D.E.: Electrospray ionization mechanisms for large polyethylene glycol chains studied through tandem ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 25, 1332–1345 (2014)CrossRefGoogle Scholar
  51. 51.
    Haler, J.R.N., Morsa, D., Lecomte, P., Jerome, C., Far, J., De Pauw, E.: Predicting ion mobility-mass spectrometry trends of polymers using the concept of apparent densities. Methods. 144, 125–133 (2018)CrossRefGoogle Scholar
  52. 52.
    Haler, J.R.N., Massonnet, P., Chirot, F., Kune, C., Comby-Zerbino, C., Jordens, J., Honing, M., Mengerink, Y., Far, J., Dugourd, P., De Pauw, E.: Comparison of different ion mobility setups using poly (ethylene oxide) PEO polymers: drift tube, TIMS, and T-wave. J. Am. Soc. Mass Spectrom. 29, 114–120 (2018)CrossRefGoogle Scholar
  53. 53.
    Haler, J.R.N., Far, J., Aqil, A., Claereboudt, J., Tomczyk, N., Giles, K., Jerome, C., De Pauw, E.: Multiple gas-phase conformations of a synthetic linear poly(acrylamide) polymer observed using ion mobility-mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 2492–2499 (2017)CrossRefGoogle Scholar
  54. 54.
    de la Mora, J.F.: Why do GroEL ions exhibit two gas phase conformers? J. Am. Soc. Mass Spectrom. 23, 2115–2121 (2012)CrossRefGoogle Scholar
  55. 55.
    Devine, P.W.A., Fisher, H.C., Calabrese, A.N., Whelan, F., Higazi, D.R., Potts, J.R., Lowe, D.C., Radford, S.E., Ashcroft, A.E.: Investigating the structural compaction of biomolecules upon transition to the gas-phase using ESI-TWIMS-MS. J. Am. Soc. Mass Spectrom. 28, 1855–1862 (2017)CrossRefGoogle Scholar
  56. 56.
    Dickinson, E.R., Jurneczko, E., Pacholarz, K.J., Clarke, D.J., Reeves, M., Ball, K.L., Hupp, T., Campopiano, D., Nikolova, P.V., Barran, P.E.: Insights into the conformations of three structurally diverse proteins: cytochrome c, p53, and MDM2, provided by variable-temperature ion mobility mass spectrometry. Anal. Chem. 87, 3231–3238 (2015)CrossRefGoogle Scholar
  57. 57.
    Hall, Z., Politis, A., Bush, M.F., Smith, L.J., Robinson, C.V.: Charge-state dependent compaction and dissociation of protein complexes: insights from ion mobility and molecular dynamics. J. Am. Chem. Soc. 134, 3429–3438 (2012)CrossRefGoogle Scholar
  58. 58.
    Jhingree, J.R., Bellina, B., Pacholarz, K.J., Barran, P.E.: Charge mediated compaction and rearrangement of gas-phase proteins: a case study considering two proteins at opposing ends of the structure-disorder continuum. J. Am. Soc. Mass Spectrom. 28, 1450–1461 (2017)CrossRefGoogle Scholar
  59. 59.
    Michaelevski, I., Eisenstein, M., Sharon, M.: Gas-phase compaction and unfolding of protein structures. Anal. Chem. 82, 9484–9491 (2010)CrossRefGoogle Scholar
  60. 60.
    Porrini, M., Rosu, F., Rabin, C., Darre, L., Gomez, H., Orozco, M., Gabelica, V.: Compaction of duplex nucleic acids upon native electrospray mass spectrometry. Acs Central Sci. 3, 454–461 (2017)CrossRefGoogle Scholar
  61. 61.
    Flick, T.G., Merenbloom, S.I., Williams, E.R.: Effects of metal ion adduction on the gas-phase conformations of protein ions. J. Am. Soc. Mass Spectrom. 24, 1654–1662 (2013)CrossRefGoogle Scholar
  62. 62.
    Pacholarz, K.J., Peters, S.J., Garlish, R.A., Henry, A.J., Taylor, R.J., Humphreys, D.P., Barran, P.E.: Molecular insights into the thermal stability of mAbs with variable-temperature ion-mobility mass spectrometry. Chembiochem. 17, 46–51 (2016)CrossRefGoogle Scholar
  63. 63.
    Pacholarz, K.J., Porrini, M., Garlish, R.A., Burnley, R.J., Taylor, R.J., Henry, A.J., Barran, P.E.: Dynamics of intact immunoglobulin G explored by drift-tube ion-mobility mass spectrometry and molecular modeling. Angew. Chem. Int. Ed. 53, 7765–7769 (2014)CrossRefGoogle Scholar
  64. 64.
    Rus, J., Moro, D., Sillero, J.A., Royuela, J., Casado, A., Estevez-Molinero, F., de la Mora, J.F.: IMS-MS studies based on coupling a differential mobility analyzer (DMA) to commercial API-MS systems. Int. J. Mass Spectrom. 298, 30–40 (2010)CrossRefGoogle Scholar
  65. 65.
    Larriba, C., Hogan, C.J., Attoui, M., Borrajo, R., Garcia, J.F., de la Mora, J.F.: The mobility-volume relationship below 3.0 nm examined by tandem mobility-mass measurement. Aerosol Sci. Technol. 45, 453–467 (2011)CrossRefGoogle Scholar
  66. 66.
    Ude, S., de la Mora, J.F.: Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides. J. Aerosol Sci. 36, 1224–1237 (2005)CrossRefGoogle Scholar
  67. 67.
    Amo-Gonzalez, M., Perez, S.: Planar differential mobility analyzer with a resolving power of 110. Anal. Chem. 90, 6735–6741 (2018)CrossRefGoogle Scholar
  68. 68.
    Koeniger, S.L., Merenbloom, S.I., Valentine, S.J., Jarrold, M.F., Udseth, H.R., Smith, R.D., Clemmer, D.E.: An IMS-IMS analogue of MS-MS. Anal. Chem. 78, 4161–4174 (2006)CrossRefGoogle Scholar
  69. 69.
    Merenbloom, S.I., Koeniger, S.L., Valentine, S.J., Plasencia, M.D., Clemmer, D.E.: IMS-IMS and IMS-IMS-IMS/MS for separating peptide and protein fragment ions. Anal. Chem. 78, 2802–2809 (2006)CrossRefGoogle Scholar
  70. 70.
    Hoaglund, C.S., Valentine, S.J., Sporleder, C.R., Reilly, J.P., Clemmer, D.E.: Three-dimensional ion mobility TOFMS analysis of electrosprayed biomolecules. Anal. Chem. 70, 2236–2242 (1998)CrossRefGoogle Scholar
  71. 71.
    Mark, J.E.: Polymer Data Handbook. (2009)Google Scholar
  72. 72.
    Hutmacher, D.W., Schantz, T., Zein, I., Ng, K.W., Teoh, S.H., Tan, K.C.: Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. 55, 203–216 (2001)Google Scholar
  73. 73.
    Bates, O.K.: Thermal conductivity of liquid silicones. 41, 1966–1968 (1949)Google Scholar
  74. 74.
    Mason, E.A.: McDaniel. E.W. John Wiley & Sons, New York (1988)Google Scholar
  75. 75.
    Criado-Hidalgo, E., Fernandez-Garcia, J., de la Mora, J.F.: Mass and charge distribution analysis in negative electrosprays of large polyethylene glycol chains by ion mobility mass spectrometry. Anal. Chem. 85, 2710–2716 (2013)CrossRefGoogle Scholar
  76. 76.
    Consta, S., Oh, M.I., Malevanets, A.: New mechanisms of macroion-induced disintegration of charged droplets. Chem. Phys. Lett. 663, 1–12 (2016)CrossRefGoogle Scholar
  77. 77.
    Duez, Q., Josse, T., Lemaur, V., Chirot, F., Choi, C.M., Dubois, P., Dugourd, P., Cornil, J., Gerbaux, P., De Winter, J.: Correlation between the shape of the ion mobility signals and the stepwise folding process of polylactide ions. J. Mass Spectrom. 52, 133–138 (2017)CrossRefGoogle Scholar
  78. 78.
    Haler, J.R.N., Massonnet, P., Far, J., de la Rosa, V.R., Lecomte, P., Hoogenboom, R., Jérôme, C., De Pauw, E.: Gas-phase dynamics of collision induced unfolding, collision induced dissociation, and electron transfer dissociation-activated polymer ions. (2018)Google Scholar
  79. 79.
    Hoskins, J.N., Trimpin, S., Grayson, S.M.: Architectural differentiation of linear and cyclic polymeric isomers by ion mobility spectrometry-mass spectrometry. Macromolecules. 44, 6915–6918 (2011)CrossRefGoogle Scholar
  80. 80.
    Larriba, C., Hogan, C.J.: Free molecular collision cross section calculation methods for nanoparticles and complex ions with energy accommodation. J. Comput. Phys. 251, 344–363 (2013)CrossRefGoogle Scholar
  81. 81.
    Epstein, P.S.: On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23, 710 (1924)CrossRefGoogle Scholar
  82. 82.
    Millikan, R.A.: The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surfaces. Phys. Rev. 22, 1–23 (1923)CrossRefGoogle Scholar
  83. 83.
    Campuzano, I.D.G., Larriba, C., Bagal, D., Schnier, P.D.: Ion mobility and mass spectrometry measurements of the humanized IgGk NIST monoclonal antibody. ACS Symp. Ser. 1202, 75–112 (2015)CrossRefGoogle Scholar
  84. 84.
    Shrivastav, V., Nahin, M., Hogan, C.J., Larriba-Andaluz, C.: Benchmark comparison for a multi-processing ion mobility calculator in the free molecular regime. J Am Soc Mass Spectr. 1–12 (2017)Google Scholar
  85. 85.
    Wyttenbach, T., von Helden, G., Batka, J.J., Carlat, D., Bowers, M.T.: Effect of the long-range potential on ion mobility measurements. J. Am. Soc. Mass Spectrom. 8, 275–282 (1997)CrossRefGoogle Scholar
  86. 86.
    Shvartsburg, A.A., Jarrold, M.F.: An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem. Phys. Lett. 261, 86–91 (1996)CrossRefGoogle Scholar
  87. 87.
    Mesleh, M.F., Hunter, J.M., Shvartsburg, A.A., Schatz, G.C., Jarrold, M.F.: Structural information from ion mobility measurements: effects of the long-range potential. J Phys Chem-Us. 100, 16082–16086 (1996)CrossRefGoogle Scholar
  88. 88.
    Rayleigh, J.W.S.B. Macmillan, (1896)Google Scholar
  89. 89.
    Bush, M.F., Hall, Z., Giles, K., Hoyes, J., Robinson, C.V., Ruotolo, B.T.: Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal. Chem. 82, 9557–9565 (2010)CrossRefGoogle Scholar
  90. 90.
    Jurneczko, E., Barran, P.E.: How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. 136, 20–28 (Analyst, 2011)Google Scholar
  91. 91.
    Ruotolo, B.T., Benesch, J.L.P., Sandercock, A.M., Hyung, S.J., Robinson, C.V.: Ion mobility-mass spectrometry analysis of large protein complexes. Nat. Protoc. 3, 1139–1152 (2008)CrossRefGoogle Scholar
  92. 92.
    Breuker, K., McLafferty, F.W.: Stepwise evolution of protein native structure with electrospray into the gas phase, 10(−12) to 10(2) S. P Natl Acad Sci USA. 105, 18145–18152 (2008)CrossRefGoogle Scholar
  93. 93.
    Steinberg, M.Z., Elber, R., McLafferty, F.W., Gerber, R.B., Breuker, K.: Early structural evolution of native cytochrome c after solvent removal. Chembiochem. 9, 2417–2423 (2008)CrossRefGoogle Scholar
  94. 94.
    Breuker, K., Jin, M., Han, X.M., Jiang, H.H., McLafferty, F.W.: Top-down identification and characterization of biomolecules by mass spectrometry. J. Am. Soc. Mass Spectrom. 19, 1045–1053 (2008)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, IUPUIIndianapolisUSA
  2. 2.Department of Mechanical EngineeringPurdue UniversiyWest LafayetteUSA
  3. 3.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations