Effects of Solvent Vapor Modifiers for the Separation of Opioid Isomers in Micromachined FAIMS-MS

  • Michael S. Wei
  • Robin H. J. Kemperman
  • Richard A. YostEmail author
Research Article


Opioid addiction is an escalating problem that is compounded by the introduction of synthetic opiate analogues such as fentanyl. Screening methods for these compound classes are challenged by the availability of synthetically manufactured analogues, including isomers of existing substances. High-field asymmetric-waveform ion mobility spectrometry (FAIMS) utilizes an alternating asymmetric electric field to separate ions by their different mobilities at high and low fields as they travel through the separation space. When coupled to mass spectrometry (MS), FAIMS enhances the separation of analytes from other interfering compounds with little to no increase in analysis time. Addition of solvent vapor into the FAIMS carrier gas has been demonstrated to enable and improve the separation of isomers. Here we investigate the effects of several solvents for the separation of four opioids. FAIMS-MS spectra with added solvent vapors show dramatic compensation field (CF) shifts for opioid [M+H]+ ions when compared to spectra acquired using dry nitrogen. Addition of vapor from aprotic solvents, such as acetonitrile and acetone, produces significantly improved resolution between the tested opioids, with baseline resolution achieved between certain opioid isomers. For protic solvents, notable CF shift differences were observed in FAIMS separations between addition of water vapor and vapors from small alcohols.

Graphical Abstract


Ion mobility FAIMS Solvent vapor modifiers Opioids Isomer separation 



We acknowledge funding from Breathtec Biomedical, Cannabix Inc., and the Partnership for Clean Competition. We also acknowledge Michelle Palumbo for her contributions in the data processing software.

Supplementary material

13361_2019_2175_MOESM1_ESM.docx (666 kb)
ESM 1 (DOCX 666 kb)


  1. 1.
    Hedegaard, H., Warner, M., Minino, A.M.: Drug overdose deaths in the United States, 1999–2016. NCHS Data Brief. 294, 1–8 (2017)Google Scholar
  2. 2.
    Kolodny, A., Courtwright, D.T., Hwang, C.S., Kreiner, P., Eadie, J.L., Clark, T.W., Alexander, G.C.: The prescription opioid and heroin crisis: a public health approach to an epidemic of addiction. Annu Rev Public Health. 36, 559–574 (2015)CrossRefGoogle Scholar
  3. 3.
    Vowles, K.E., McEntee, M.L., Julnes, P.S., Frohe, T., Ney, J.P., van der Goes, D.N.: Rates of opioid misuse, abuse, and addiction in chronic pain. Pain. 156, 569–576 (2015)CrossRefGoogle Scholar
  4. 4.
    Gergov, M., Nokua, P., Vuori, E., Ojanperä, I.: Simultaneous screening and quantification of 25 opioid drugs in post-mortem blood and urine by liquid chromatography-tandem mass spectrometry. Forensic Sci Int. 186, 36–43 (2009)CrossRefGoogle Scholar
  5. 5.
    Pergolizzi, J., Pappagallo, M., Stauffer, J., Gharibo, C., Fortner, N., De Jesus, M.N., Brennan, M.J., Richmond, C., Hussey, D.: The role of urine drug testing for patients on opioid therapy. Pain Pract. 10, 497–507 (2010)CrossRefGoogle Scholar
  6. 6.
    Manicke, N.E., Belford, M.: Separation of opiate isomers using electrospray ionization and paper spray coupled to high-field asymmetric waveform ion mobility spectrometry. J Am Soc Mass Spectrom. 26, 701–705 (2015)CrossRefGoogle Scholar
  7. 7.
    Liu, C., Gómez-Ríos, G.A., Schneider, B.B., Le Blanc, J.C.Y., Reyes-Garcés, N., Arnold, D.W., Covey, T.R., Pawliszyn, J.: Fast quantitation of opioid isomers in human plasma by differential mobility spectrometry/mass spectrometry via SPME/open-port probe sampling interface. Anal Chim Acta. 991, 89–94 (2017)CrossRefGoogle Scholar
  8. 8.
    Buryakov, I.A., Krylov, E.V., Nazarov, E.G., Rasulev, U.K.: A new method of separation of multi-atomic ions by mobility at atmospheric pressure using a high-frequency amplitude-asymmetric strong electric field. Int J Mass Spectrom Ion Process. 128, 143–148 (1993)CrossRefGoogle Scholar
  9. 9.
    Purves, R.W., Guevremont, R., Day, S., Pipich, C.W., Matyjaszczyk, M.S.: Mass spectrometric characterization of a high-field asymmetric waveform ion mobility spectrometer. Rev Sci Instrum. 69, 4094–4105 (1998)CrossRefGoogle Scholar
  10. 10.
    Schneider, B.B., Nazarov, E.G., Londry, F., Vouros, P., Covey, T.R.: Differential mobility spectrometry/mass spectrometry history, theory, design optimization, simulations, and applications. Mass Spectrom Rev. 35, 687–737 (2016)CrossRefGoogle Scholar
  11. 11.
    Yousef, A., Shrestha, S., Viehland, L.A., Lee, E.P.F., Gray, B.R., Ayles, V.L., Wright, T.G., Breckenridge, W.H.: Interaction potentials and transport properties of coinage metal cations in rare gases. J Chem Phys. 127, 154309–154319 (2007)Google Scholar
  12. 12.
    Shvartsburg, A.A., Danielson, W.F., Smith, R.D.: High-resolution differential ion mobility separations using helium-rich gases. Anal Chem. 82, 2456–2462 (2010)CrossRefGoogle Scholar
  13. 13.
    Bowman, A.P., Abzalimov, R.R., Shvartsburg, A.A.: Broad separation of isomeric lipids by high-resolution differential ion mobility spectrometry with tandem mass spectrometry. J Am Soc Mass Spectrom. 28, 1552–1561 (2017)Google Scholar
  14. 14.
    Shvartsburg, A.A., Bryskiewicz, T., Purves, R.W., Tang, K., Guevremont, R., Smith, R.D.: Field asymmetric waveform ion mobility spectrometry studies of proteins: dipole alignment in ion mobility spectrometry? J Phys Chem B. 110, 21966–21980 (2006)CrossRefGoogle Scholar
  15. 15.
    Šala, M., Lísa, M., Campbell, J.L., Holčapek, M.: Determination of triacylglycerol regioisomers using differential mobility spectrometry. Rapid Commun Mass Spectrom. 30, 256–264 (2016)CrossRefGoogle Scholar
  16. 16.
    Purves, R.W., Ozog, A.R., Ambrose, S.J., Prasad, S., Belford, M., Dunyach, J.-J.: Using gas modifiers to significantly improve sensitivity and selectivity in a cylindrical FAIMS device. J Am Soc Mass Spectrom. 25, 1274–1284 (2014)CrossRefGoogle Scholar
  17. 17.
    Rorrer, L.C., Yost, R.A.: Solvent vapor effects on planar high-field asymmetric waveform ion mobility spectrometry. Int J Mass Spectrom. 300, 173–181 (2011)CrossRefGoogle Scholar
  18. 18.
    Schneider, B.B., Nazarov, E.G., Covey, T.R.: Peak capacity in differential mobility spectrometry: effects of transport gas and gas modifiers. Int J Ion Mobil Spectrom. 15, 141–150 (2012)CrossRefGoogle Scholar
  19. 19.
    Schneider, B.B., Covey, T.R., Nazarov, E.G.: DMS-MS separations with different transport gas modifiers. Int J Ion Mobil Spectrom. 16, 207–216 (2013)CrossRefGoogle Scholar
  20. 20.
    Beach, D.G.: Differential mobility spectrometry for improved selectivity in hydrophilic interaction liquid chromatography-tandem mass spectrometry analysis of paralytic shellfish toxins. J Am Soc Mass Spectrom. 28, 1518–1530 (2017)Google Scholar
  21. 21.
    Schneider, B.B., Covey, T.R., Coy, S.L., Krylov, E.V., Nazarov, E.G.: Chemical effects in the separation process of a differential mobility/mass spectrometer system. Anal Chem. 82, 1867–1880 (2010)CrossRefGoogle Scholar
  22. 22.
    Hall, A.B., Coy, S.L., Nazarov, E.G., Vouros, P.: Rapid separation and characterization of cocaine and cocaine cutting agents by differential mobility spectrometry-mass spectrometry. J Forensic Sci. 57, 750–756 (2012)CrossRefGoogle Scholar
  23. 23.
    Kafle, A., Coy, S.L., Wong, B.M., Fornace, A.J., Glick, J.J., Vouros, P.: Understanding gas phase modifier interactions in rapid analysis by differential mobility-tandem mass spectrometry. J Am Soc Mass Spectrom. 25, 1098–1113 (2014)CrossRefGoogle Scholar
  24. 24.
    Grissinger, M.: Morphine and hydromorphone: an omnipresent risk of mix-Ups. P&T. 33, 194–247 (2008)Google Scholar
  25. 25.
    Krylova, N., Krylov, E.V., Eiceman, G.A., Stone, J.A.: Effect of moisture on the field dependence of mobility for gas-phase ions of organophosphorus compounds at atmospheric pressure with field asymmetric ion mobility spectrometry. J Phys Chem A. 107, 3648–3654 (2003)CrossRefGoogle Scholar
  26. 26.
    Eiceman, G.A., Krylov, E.V., Krylova, N.S., Nazarov, E.G., Miller, R.A.: Separation of ions from explosives in differential mobility spectrometry by vapor-modified drift gas. Anal Chem. 76, 4937–4944 (2004)CrossRefGoogle Scholar
  27. 27.
    Levin, D.S., Vouros, P., Miller, R.A., Nazarov, E.G., Morris, J.C.: Characterization of gas-phase molecular interactions on differential mobility ion behavior utilizing an electrospray ionization-differential mobility-mass spectrometer system. Anal Chem. 78, 96–106 (2006)CrossRefGoogle Scholar
  28. 28.
    Rorrer, L.C., Yost, R.A.: Solvent vapor effects in planar high-field asymmetric waveform ion mobility spectrometry: solvent trends and temperature effects. Int J Mass Spectrom. 378, 336–346 (2015)CrossRefGoogle Scholar
  29. 29.
    Chouinard, C.D., Cruzeiro, V.W.D., Roitberg, A.E., Yost, R.A.: Experimental and theoretical investigation of sodiated multimers of steroid epimers with ion mobility-mass spectrometry. J Am Soc Mass Spectrom. 28, 323–331 (2017)CrossRefGoogle Scholar
  30. 30.
    Campbell, J.L., Yang, A.M.C., Melo, L.R., Hopkins, W.S.: Studying gas-phase interconversion of tautomers using differential mobility spectrometry. J Am Soc Mass Spectrom. 27, 1277–1284 (2016)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of FloridaGainesvilleUSA

Personalised recommendations