Substance P in the Gas Phase: Conformational Changes and Dissociations Induced by Collisional Activation in a Drift Tube

  • Christopher R. Conant
  • Daniel R. Fuller
  • Zhichao Zhang
  • Daniel W. Woodall
  • David H. Russell
  • David E. ClemmerEmail author
Focus: Ion Mobility Spectrometry (IMS): Research Article


The work presented below is related to our companion paper in this issue, entitled: Substance P in solution: trans-to-cis configurational changes of penultimate prolines initiate non-enzymatic peptide bond cleavages. Two-dimensional ion mobility spectrometry (IMS-IMS) and mass spectrometry techniques are used to investigate structural transitions for [M+3H]3+ ions of substance P (subP) upon collisional activation (CA) in the gas phase. In this approach, different conformations of ions having a specified mobility are selected after an initial IMS separation, collisionally activated to produce new conformers, and these product structures are separated again using a second IMS region. In this way, it is possible to follow folding and unfolding transitions of different conformations. The analysis shows evidence for five conformations. Unlike other systems, every transition is irreversible. Studies as a function of activation voltage are used to discern pathways of structural changes prior to reaching the energy required for dissociation. Thresholds associated with the onsets of transitions are calibrated to obtain estimates of the energetic barriers between different structures and semi-quantitative potential energy diagrams are presented. Overall, barriers associated with structural transitions of [subP+3H]3+ in the absence of solvent are on the order of ~ 40 kJ mol−1, substantially lower than the ~ 90 kJ mol−1 required for some similar structural transitions in solutions of ethanol. Comparisons of the transition energies in the gas phase with thermochemistry for similar transitions in solution provide clues about why reverse transitions are prohibited.

Graphical Abstract


Ion mobility spectrometry-mass spectrometry Peptide conformation Activation energy 



This work is supported in part by funds from the National Institute of Health, R01 GM117207-04, and the Indiana University Robert and Marjorie Mann fellowships (CRC, DRF). The work at TAMU (DHR) was funded by NSF (CHE-1707675) and NIH (P41GM121751-01A1).

Supplementary material

13361_2019_2160_MOESM1_ESM.docx (315 kb)
ESM 1 (DOCX 314 kb)


  1. 1.
    Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I., Bourne, P.: The protein data Bank nucleic acids research, 28: 235-242. URL: Citation. (2000)
  2. 2.
    Dill, K.A., MacCallum, J.L.: The protein-folding problem, 50 years on. Science. 338, 1042–1046 (2012)CrossRefGoogle Scholar
  3. 3.
    Service, R. F.: Google’s Deep Mind aces protein folding. Accessed 13 Jan 2019
  4. 4.
    Kendrew, J.C., Bodo, G., Dintzis, H.M., Parrish, R., Wyckoff, H., Phillips, D.C.: A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature. 181, 662–666 (1958)CrossRefGoogle Scholar
  5. 5.
    Epstein, C. J., Goldberger, R. F., Anfinsen, C. B.: The genetic control of tertiary protein structure: studies with model systems. In: Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press. 28, 439–449 (1963)Google Scholar
  6. 6.
    Williamson, M.P., Havel, T.F., Wüthrich, K.: Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1 H nuclear magnetic resonance and distance geometry. World Scientific, Singapore (1995)CrossRefGoogle Scholar
  7. 7.
    Fersht, A.R.: From the first protein structures to our current knowledge of protein folding: delights and scepticisms. Nat. Rev. Mol. Cell Biol. 9, 650 (2008)CrossRefGoogle Scholar
  8. 8.
    Boutet, S., Lomb, L., Williams, G.J., Barends, T.R., Aquila, A., Doak, R.B., Weierstall, U., DePonte, D.P., Steinbrener, J., Shoeman, R.L.: High-resolution protein structure determination by serial femtosecond crystallography. Science. 337, 362–364 (2012)CrossRefGoogle Scholar
  9. 9.
    Walter, P., Ron, D.: The unfolded protein response: from stress pathway to homeostatic regulation. Science. 334, 1081–1086 (2011)CrossRefGoogle Scholar
  10. 10.
    Desai, U.R., Osterhout, J.J., Klibanov, A.M.: Protein structure in the lyophilized state: a hydrogen isotope exchange/NMR study with bovine pancreatic trypsin inhibitor. J. Am. Chem. Soc. 116, 9420–9422 (1994)CrossRefGoogle Scholar
  11. 11.
    Zaks, A., Klibanov, A.M.: Enzymatic catalysis in nonaqueous solvents. J. Biol. Chem. 263, 3194–3201 (1988)Google Scholar
  12. 12.
    Freeman, B.C., Morimoto, R.I.: The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J. 15, 2969–2979 (1996)CrossRefGoogle Scholar
  13. 13.
    Hershko, A., Ciechanover, A.: The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998)CrossRefGoogle Scholar
  14. 14.
    Ciechanover, A., Schwartz, A.L.: The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proc. Natl. Acad. Sci. 95, 2727–2730 (1998)CrossRefGoogle Scholar
  15. 15.
    Aguzzi, A., O’connor, T.: Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat. Rev. Drug Discov. 9, 237 (2010)CrossRefGoogle Scholar
  16. 16.
    Ross, C.A., Poirier, M.A.: Protein aggregation and neurodegenerative disease. Nat. Med. 10, S10 (2004)CrossRefGoogle Scholar
  17. 17.
    Goldberg, A.L.: Protein degradation and protection against misfolded or damaged proteins. Nature. 426, 895 (2003)CrossRefGoogle Scholar
  18. 18.
    El-Baba, T.J., Fuller, D.R., Woodall, D.W., Raab, S.A., Conant, C.R., Dilger, J.M., Toker, Y., Williams, E.R., Russell, D.H., Clemmer, D.E.: Melting proteins confined in nanodroplets with 10.6 μm light provides clues about early steps of denaturation. Chem. Commun. 54, 3270–3273 (2018)CrossRefGoogle Scholar
  19. 19.
    Bohrer, B.C., Merenbloom, S.I., Koeniger, S.L., Hilderbrand, A.E., Clemmer, D.E.: Biomolecule analysis by ion mobility spectrometry. Annu. Rev. Anal. Chem. 1, 293–327 (2008)CrossRefGoogle Scholar
  20. 20.
    Lumry, R., Eyring, H.: Conformation changes of proteins. J. Phys. Chem. 58, 110–120 (1954)CrossRefGoogle Scholar
  21. 21.
    Cheng, X., Wu, Z., Fenselau, C.: Collision energy dependence of proton-bound dimer dissociation: entropy effects, proton affinities, and intramolecular hydrogen-bonding in protonated peptides. J. Am. Chem. Soc. 115, 4844–4848 (1993)CrossRefGoogle Scholar
  22. 22.
    Suckau, D., Shi, Y., Beu, S.C., Senko, M.W., Quinn, J.P., Wampler, F., McLafferty, F.W.: Coexisting stable conformations of gaseous protein ions. Proc. Natl. Acad. Sci. 90, 790–793 (1993)CrossRefGoogle Scholar
  23. 23.
    Covey, T., Douglas, D.: Collision cross sections for protein ions. J. Am. Soc. Mass Spectrom. 4, 616–623 (1993)CrossRefGoogle Scholar
  24. 24.
    Cox, K., Julian, R., Cooks, R., Kaiser, R.: Conformer selection of protein ions by ion mobility in a triple quadrupole mass spectrometer. J. Am. Soc. Mass Spectrom. 5, 127–136 (1994)CrossRefGoogle Scholar
  25. 25.
    Gross, D.S., Schnier, P.D., Rodriguez-Cruz, S.E., Fagerquist, C.K., Williams, E.R.: Conformations and folding of lysozyme ions in vacuo. Proc. Natl. Acad. Sci. 93, 3143–3148 (1996)CrossRefGoogle Scholar
  26. 26.
    Von Helden, G., Wyttenbach, T., Bowers, M.T.: Conformation of macromolecules in the gas phase: use of matrix-assisted laser desorption methods in ion chromatography. Science. 267, 1483–1485 (1995)CrossRefGoogle Scholar
  27. 27.
    Clemmer, D.E., Hudgins, R.R., Jarrold, M.F.: Naked protein conformations: cytochrome c in the gas phase. J. Am. Chem. Soc. 117, 10141–10142 (1995)CrossRefGoogle Scholar
  28. 28.
    Freitas, M.A., Hendrickson, C.L., Emmett, M.R., Marshall, A.G.: High-field Fourier transform ion cyclotron resonance mass spectrometry for simultaneous trapping and gas-phase hydrogen/deuterium exchange of peptide ions. J. Am. Soc. Mass Spectrom. 9, 1012–1019 (1998)CrossRefGoogle Scholar
  29. 29.
    Grayson M.A. (ed.): Measuring mass: from positive rays to proteins. Chemical Heritage Foundation, Philadelphia (2002)Google Scholar
  30. 30.
    Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass spectrometry of large biomolecules. Science. 246, 64–71 (1989)CrossRefGoogle Scholar
  31. 31.
    Silveira, J.A., Fort, K.L., Kim, D., Servage, K.A., Pierson, N.A., Clemmer, D.E., Russell, D.H.: From solution to the gas phase: stepwise dehydration and kinetic trapping of substance P reveals the origin of peptide conformations. J. Am. Chem. Soc. 135, 19147–19153 (2013)CrossRefGoogle Scholar
  32. 32.
    Pierson, N.A., Chen, L., Valentine, S.J., Russell, D.H., Clemmer, D.E.: Number of solution states of bradykinin from ion mobility and mass spectrometry measurements. J. Am. Chem. Soc. 133, 13810–13813 (2011)CrossRefGoogle Scholar
  33. 33.
    Lee, S.-W., Freivogel, P., Schindler, T., Beauchamp, J.: Freeze-dried biomolecules: FT-ICR studies of the specific solvation of functional groups and clathrate formation observed by the slow evaporation of water from hydrated peptides and model compounds in the gas phase. J. Am. Chem. Soc. 120, 11758–11765 (1998)CrossRefGoogle Scholar
  34. 34.
    Liu, Y., Valentine, S.J., Counterman, A.E., Hoaglund, C.S., Clemmer, D.E.: Peer reviewed: injected-ion mobility analysis of biomolecules. Anal. Chem. 69, 728A–735A (1997)CrossRefGoogle Scholar
  35. 35.
    McPherson, A., Gavira, J.A.: Introduction to protein crystallization. Acta Crystallogr. F Struct. Biol. Commun. 70, 2–20 (2014)CrossRefGoogle Scholar
  36. 36.
    Billeter, M.: Comparison of protein structures determined by NMR in solution and by X-ray diffraction in single crystals. Q. Rev. Biophys. 25, 325–377 (1992)CrossRefGoogle Scholar
  37. 37.
    Severini, C., Improta, G., Falconieri-Erspamer, G., Salvadori, S., Erspamer, V.: The tachykinin peptide family. Pharmacol. Rev. 54, 285–322 (2002)CrossRefGoogle Scholar
  38. 38.
    Conant, C.R., Fuller, D.R., El-Baba, T.J., Zhang, Z., Russell, D.H., Clemmer, D.E.: Substance P in solution: trans-to-cis configurational changes of penultimate prolines initiate non-enzymatic peptide bond cleavages. J. Am. Soc. Mass Spectrom. In press (2019)Google Scholar
  39. 39.
    Fischer, G., Heins, J., Barth, A.: The conformation around the peptide bond between the P1-and P2-positions is important for catalytic activity of some proline-specific proteases. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 742, 452–462 (1983)CrossRefGoogle Scholar
  40. 40.
    Koeniger, S.L., Merenbloom, S.I., Valentine, S.J., Jarrold, M.F., Udseth, H.R., Smith, R.D., Clemmer, D.E.: An IMS−IMS analogue of MS−MS. Anal. Chem. 78, 4161–4174 (2006)CrossRefGoogle Scholar
  41. 41.
    Shelimov, K.B., Clemmer, D.E., Hudgins, R.R., Jarrold, M.F.: Protein structure in vacuo: gas-phase conformations of BPTI and cytochrome c. J. Am. Chem. Soc. 119, 2240–2248 (1997)CrossRefGoogle Scholar
  42. 42.
    Dixit, S.M., Polasky, D.A., Ruotolo, B.T.: Collision induced unfolding of isolated proteins in the gas phase: past, present, and future. Curr. Opin. Chem. Biol. 42, 93–100 (2018)CrossRefGoogle Scholar
  43. 43.
    Tian, Y., Han, L., Buckner, A.C., Ruotolo, B.T.: Collision induced unfolding of intact antibodies: rapid characterization of disulfide bonding patterns, glycosylation, and structures. Anal. Chem. 87, 11509–11515 (2015)CrossRefGoogle Scholar
  44. 44.
    Pierson, N.A., Clemmer, D.E.: An IMS–IMS threshold method for semi-quantitative determination of activation barriers: interconversion of proline cis↔ trans forms in triply protonated bradykinin. Int. J. Mass Spectrom. 377, 646–654 (2015)CrossRefGoogle Scholar
  45. 45.
    Hoaglund, C.S., Valentine, S.J., Sporleder, C.R., Reilly, J.P., Clemmer, D.E.: Three-dimensional ion mobility/TOFMS analysis of electrosprayed biomolecules. Anal. Chem. 70, 2236–2242 (1998)CrossRefGoogle Scholar
  46. 46.
    Mason, E.A., McDaniel, E.W.: Transport properties of ions in gases. Wiley, New York (1988)CrossRefGoogle Scholar
  47. 47.
    Coin, I., Beyermann, M., Bienert, M.: Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat. Protoc. 2, 3247–3256 (2007)CrossRefGoogle Scholar
  48. 48.
    Stewart, D.E., Sarkar, A., Wampler, J.E.: Occurrence and role of cis peptide bonds in protein structures. J. Mol. Biol. 214, 253–260 (1990)CrossRefGoogle Scholar
  49. 49.
    Ramachandran, G.T., Sasisekharan, V.: Conformation of polypeptides and proteins. Adv. Protein Chem. 23, 283–437 (1968)CrossRefGoogle Scholar
  50. 50.
    Jorgensen, W.L., Gao, J.: Cis-trans energy difference for the peptide bond in the gas phase and in aqueous solution. J. Am. Chem. Soc. 110, 4212–4216 (1988)CrossRefGoogle Scholar
  51. 51.
    Zimmerman, S.S., Scheraga, H.A.: Stability of cis, trans, and nonplanar peptide groups. Macromolecules. 9, 408–416 (1976)CrossRefGoogle Scholar
  52. 52.
    Zhong, H., Carlson, H.A.: Conformational studies of polyprolines. J. Chem. Theory Comput. 2, 342–353 (2006)CrossRefGoogle Scholar
  53. 53.
    Glover, M.S., Bellinger, E.P., Radivojac, P., Clemmer, D.E.: Penultimate proline in neuropeptides. Anal. Chem. 87, 8466–8472 (2015)CrossRefGoogle Scholar
  54. 54.
    Glover, M.S., Shi, L., Fuller, D.R., Arnold, R.J., Radivojac, P., Clemmer, D.E.: On the split personality of penultimate proline. J. Am. Soc. Mass Spectrom. 26, 444–452 (2015)CrossRefGoogle Scholar
  55. 55.
    Counterman, A.E., Clemmer, D.E.: Cis–trans signatures of proline-containing tryptic peptides in the gas phase. Anal. Chem. 74, 1946–1951 (2002)CrossRefGoogle Scholar
  56. 56.
    Henderson, S.C., Li, J., Counterman, A.E., Clemmer, D.E.: Intrinsic size parameters for Val, Ile, Leu, Gln, Thr, Phe, and Trp residues from ion mobility measurements of polyamino acid ions. J. Phys. Chem. B. 103, 8780–8785 (1999)CrossRefGoogle Scholar
  57. 57.
    Valentine, S.J., Counterman, A.E., Hoaglund-Hyzer, C.S., Clemmer, D.E.: Intrinsic amino acid size parameters from a series of 113 lysine-terminated tryptic digest peptide ions. J. Phys. Chem. B. 103, 1203–1207 (1999)CrossRefGoogle Scholar
  58. 58.
    Counterman, A.E., Clemmer, D.E.: Volumes of individual amino acid residues in gas-phase peptide ions. J. Am. Chem. Soc. 121, 4031–4039 (1999)CrossRefGoogle Scholar
  59. 59.
    Valentine, S.J., Counterman, A.E., Clemmer, D.E.: A database of 660 peptide ion cross sections: use of intrinsic size parameters for bona fide predictions of cross sections. J. Am. Soc. Mass Spectrom. 10, 1188–1211 (1999)CrossRefGoogle Scholar
  60. 60.
    Srebalus Barnes, C.A., Clemmer, D.E.: Assessing intrinsic side chain interactions between i and i+ 4 residues in solvent-free peptides: a combinatorial gas-phase approach. J. Phys. Chem. A. 107, 10566–10579 (2003)CrossRefGoogle Scholar
  61. 61.
    Pierson, N.A., Chen, L., Russell, D.H., Clemmer, D.E.: Cis–trans isomerizations of proline residues are key to bradykinin conformations. J. Am. Chem. Soc. 135, 3186–3192 (2013)CrossRefGoogle Scholar
  62. 62.
    Fort, K.L., Silveira, J.A., Pierson, N.A., Servage, K.A., Clemmer, D.E., Russell, D.H.: From solution to the gas phase: factors that influence kinetic trapping of substance P in the gas phase. J. Phys. Chem. B. 118, 14336–14344 (2014)CrossRefGoogle Scholar
  63. 63.
    Moision, R., Armentrout, P.: The special five-membered ring of proline: an experimental and theoretical investigation of alkali metal cation interactions with proline and its four-and six-membered ring analogues. J. Phys. Chem. A. 110, 3933–3946 (2006)CrossRefGoogle Scholar
  64. 64.
    Heaton, A., Moision, R., Armentrout, P.: Experimental and theoretical studies of sodium cation interactions with the acidic amino acids and their amide derivatives. J. Phys. Chem. A. 112, 3319–3327 (2008)CrossRefGoogle Scholar
  65. 65.
    Armentrout, P., Gabriel, A., Moision, R.: An experimental and theoretical study of alkali metal cation/methionine interactions. Int. J. Mass Spectrom. 283, 56–68 (2009)CrossRefGoogle Scholar
  66. 66.
    Butcher, D.J., Asano, K.G., Goeringer, D.E., McLuckey, S.A.: Thermal dissociation of gaseous bradykinin ions. J. Phys. Chem. A. 103, 8664–8671 (1999)CrossRefGoogle Scholar
  67. 67.
    Sztáray, J., Memboeuf, A., Drahos, L., Vékey, K.: Leucine enkephalin—a mass spectrometry standard. Mass Spectrom. Rev. 30, 298–320 (2011)CrossRefGoogle Scholar
  68. 68.
    Meot-Ner, M., Dongré, A.R., Somogyi, A., Wysocki, V.H.: Thermal decomposition kinetics of protonated peptides and peptide dimers, and comparison with surface-induced dissociation. Rapid Commun. Mass Spectrom. 9, 829–836 (1995)CrossRefGoogle Scholar
  69. 69.
    Asano, K.G., Goeringer, D.E., McLuckey, S.A.: Thermal dissociation in the quadrupole ion trap: ions derived from leucine enkephalin1. Int. J. Mass Spectrom. 185, 207–219 (1999)CrossRefGoogle Scholar
  70. 70.
    Paech, K., Jockusch, R.A., Williams, E.R.: Slow infrared laser dissociation of molecules in the rapid energy exchange limit. J. Phys. Chem. A. 106, 9761–9766 (2002)CrossRefGoogle Scholar
  71. 71.
    Rodgers, M.T., Armentrout, P.B.: A thermodynamic “vocabulary” for metal ion interactions in biological systems. Acc. Chem. Res. 37, 989–998 (2004)CrossRefGoogle Scholar
  72. 72.
    Pierson, N.A., Valentine, S.J., Clemmer, D.E.: Evidence for a quasi-equilibrium distribution of states for bradykinin [M+ 3H] 3+ ions in the gas phase. J. Phys. Chem. B. 114, 7777–7783 (2010)CrossRefGoogle Scholar
  73. 73.
    Chen, X., Turecček, F.: Simple b ions have cyclic oxazolone structures. A neutralization-reionization mass spectrometric and computational study of oxazolone radicals. J. Am. Soc. Mass Spectrom. 16, 1941–1956 (2005)CrossRefGoogle Scholar
  74. 74.
    Capasso, S., Vergara, A., Mazzarella, L.: Mechanism of 2, 5-dioxopiperazine formation. J. Am. Chem. Soc. 120, 1990–1995 (1998)CrossRefGoogle Scholar
  75. 75.
    Walter, R., Simmons, W.H., Yoshimoto, T.: Proline specific endo-and exopeptidases. Mol. Cell. Biochem. 30, 111–127 (1980)CrossRefGoogle Scholar
  76. 76.
    Borthwick, A.D.: 2, 5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev. 112, 3641–3716 (2012)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA
  2. 2.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations