Advertisement

Detection of Protein Toxin Simulants from Contaminated Surfaces by Paper Spray Mass Spectrometry

  • William R. A. Wichert
  • Elizabeth S. Dhummakupt
  • Chengsen Zhang
  • Phillip M. Mach
  • Robert C. Bernhards
  • Trevor GlarosEmail author
  • Nicholas E. ManickeEmail author
Focus: Emerging Investigators: Research Article

Abstract

Proteinaceous toxins are harmful proteins derived from plants, bacteria, and other natural sources. They pose a risk to human health due to infection and also as possible biological warfare agents. Paper spray mass spectrometry (PS-MS) with wipe sampling was used to detect proteins from surfaces as a potential tool for identifying the presence of these toxins. Proteins ranging in mass between 12.4 and 66.5 kDa were tested, including a biological toxin simulant/vaccine for Staphylococcal enterotoxin B (SEBv). Various substrates were tested for these representative proteins, including a laboratory bench, a notebook cover, steel, glass, plant leaf and vinyl flooring. Carbon sputtered porous polyethylene (CSPP) was found to outperform typical chromatography paper used for paper spray, as well as carbon nanotube (CNT)-coated paper and polyethylene (PE), which have been previously shown to be well-suited for protein analysis. Low microgram quantities of the protein toxin simulant and other test proteins were successfully detected with good signal-to-noise from surfaces using a porous wipe. These applications demonstrate that PS-MS can potentially be used for rapid, sample preparation-free detection of proteins and biological warfare agents, which would be beneficial to first responders and warfighters.

Keywords

Large molecule Swabbing Ambient ionization Direct analysis Cartridge prototyping 

Notes

Acknowledgements

This work was supported by a grant (CB10238) from the Joint Science and Technology Office (JSTO) and the CBA Division of the Defense Threat Reduction Agency (DTRA). DTRA is a Combat Support Agency and a Defense Agency with a three-pronged mission: (1) to counter the threats posed by the full spectrum of weapons of mass destruction (WMD), including chemical, biological, radiological, nuclear, and high-yield explosives; (2) counter the threats posed by the growing, evolving categories of improvised threats, including improvised explosive devices, car bombs, and weaponized consumer drones, as well as the tactics, technologies, and networks that put them on the battlefield; (3) ensure the U.S. military maintains a safe, secure, effective, and credible nuclear weapons deterrent.

The authors would like to thank Alena Calm (CCDC Chemical Biological Center) for kindly providing all purified SEBv used in this study. The authors would also like to thank the Integrated Nanosystems Development Institute (INDI) for the use of the sputtering and SEM systems, as well as David Heemstra (NDnano) at the University of Notre Dame for his contribution and valuable discussions regarding thin film deposition. Conclusions and opinions presented here are those of the authors and are not the official policy of the US Army, CCDC Chemical Biological Center, or the US Government. Information in this report is cleared for public release and distribution is unlimited.

References

  1. 1.
    Krenzelok, E. P., and American Society of Health-System Pharmacists: Biological and chemicalterrorism : a pharmacy preparedness guide. American Society of Health-System Pharmacists, Bethesda (2003)Google Scholar
  2. 2.
    Jansen, H.J., Breeveld, F.J., Stijnis, C., Grobusch, M.P.: Biological warfare, bioterrorism, and biocrime. Clin. Microbiol. Infect. 20, 488–496 (2014)CrossRefGoogle Scholar
  3. 3.
    Pinkse, M.W.H., Maier, C.S., Kim, J.I., Oh, B.H., Heck, A.J.R.: Macromolecular assembly of Helicobacter pylori urease investigated by mass spectrometry. J. Mass Spectrom. 38, 315–320 (2003)CrossRefGoogle Scholar
  4. 4.
    Török, T.J., Tauxe, R.V., Wise, R.P., Livengood, J.R., Sokolow, R., Mauvais, S., Birkness, K.A., Skeels, M.R., Horan, J.M., Foster, L.R.: A large community outbreak of salmonellosis caused by intentional contamination of restaurant salad bars. JAMA. 278, 389–395 (1997)CrossRefGoogle Scholar
  5. 5.
    Crowe, K.: Salad bar salmonella. Forensic Examiner. 16, 24 (2007)Google Scholar
  6. 6.
    Rasko, D.A., Worsham, P.L., Abshire, T.G., Stanley, S.T., Bannan, J.D., Wilson, M.R., Langham, R.J., Decker, R.S., Jiang, L., Read, T.D.: Bacillus anthracis comparative genome analysis in support of the Amerithrax investigation. Proc. Natl. Acad. Sci. 108, 5027–5032 (2011)CrossRefGoogle Scholar
  7. 7.
    National Research Council: Review of the Scientific Approaches Used During the FBI's Investigation of the 2001 Anthrax Letters. The National Academies Press, Washington, DC (2011). doi: https://doi.org/10.17226/13098
  8. 8.
    Roxas-Duncan, V.I., Smith, L.A.: Ricin Perspective in Bioterrorism, Bioterrorism, Stephen A. Morse, IntechOpen (2012). doi: https://doi.org/10.5772/33392
  9. 9.
    Duracova, M., Klimentova, J., Fucikova, A., Dresler, J.: Proteomic methods of detection and quantification of protein toxins. Toxins. 10, 30 (2018)CrossRefGoogle Scholar
  10. 10.
    Cieslak, T.J., Kortepeter, M.G., Wojtyk, R.J., Jansen, H.J., Reyes, R.A., Smith, J.O., Panel, N.B.M.A.: Beyond the dirty dozen: a proposed methodology for assessing future bioweapon threats. Mil. Med. 183, E59–E65 (2018)CrossRefGoogle Scholar
  11. 11.
    Dou, K., Chen, G., Yu, F.B., Liu, Y.X., Chen, L.X., Cao, Z.P., Chen, T., Li, Y.L., You, J.M.: Bright and sensitive ratiometric fluorescent probe enabling endogenous FA imaging and mechanistic exploration of indirect oxidative damage due to FA in various living systems. Chem. Sci. 8, 7851–7861 (2017)CrossRefGoogle Scholar
  12. 12.
    Ngom, B., Guo, Y.C., Wang, X.L., Bi, D.R.: Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal. Bioanal. Chem. 397, 1113–1135 (2010)CrossRefGoogle Scholar
  13. 13.
    Mason, J.T., Xu, L., Sheng, Z.M., O’leary, T.: Liposome polymerase chain reaction assay for the high sensitivity detection of biological toxins. Biophys. J. 329A–329A (2007)Google Scholar
  14. 14.
    Mason, J.T., Xu, L., Sheng, Z.M., He, J., O’leary, T.J.: Liposome polymerase chain reaction assay for the sub-attomolar detection of cholera toxin and botulinum neurotoxin type A. Nat. Protoc. 1, 2003–2011 (2006)CrossRefGoogle Scholar
  15. 15.
    Pal, V., Sharma, M.K., Sharma, S.K., Goel, A.K.: Biological warfare agents and their detection and monitoring techniques. Def. Sci. J. 66, 445–457 (2016)CrossRefGoogle Scholar
  16. 16.
    Holst-Jensen, A., Spilsberg, B., Arulandhu, A.J., Kok, E., Shi, J.X., Zel, J.: Application of whole genome shotgun sequencing for detection and characterization of genetically modified organisms and derived products. Anal. Bioanal. Chem. 408, 4595–4614 (2016)CrossRefGoogle Scholar
  17. 17.
    Mikheyev, A.S., Tin, M.M.: A first look at the Oxford Nanopore MinION sequencer. Mol. Ecol. Resour. 14, 1097–1102 (2014)CrossRefGoogle Scholar
  18. 18.
    Kilianski, A., Roth, P.A., Liem, A.T., Hill, J.M., Willis, K.L., Rossmaier, R.D., Marinich, A.V., Maughan, M.N., Karavis, M.A., Kuhn, J.H.: Use of unamplified RNA/cDNA–hybrid nanopore sequencing for rapid detection and characterization of RNA viruses. Emerg. Infect. Dis. 22, 1448 (2016)CrossRefGoogle Scholar
  19. 19.
    Yang, Y.Q., Liu, R.Y., Xie, H.Q., Hui, Y.T., Jiao, R.G., Gong, Y., Zhang, Y.Y.: Advances in nanopore sequencing technology. J. Nanosci. Nanotechnol. 13, 4521–4538 (2013)CrossRefGoogle Scholar
  20. 20.
    Steinbock, L.J., Radenovic, A.: The emergence of nanopores in next-generation sequencing. Nanotechnology. 26(5), (2015)Google Scholar
  21. 21.
    Hutchins, A.S., Astwood, M.J., Saah, J.R., Michel, P.A., Newton, B.R., Dauphin, L.A.: Evaluation of automated and manual DNA purification methods for detecting Ricinus communis DNA during ricin investigations. Forensic Sci. Int. 236, 10–15 (2014)CrossRefGoogle Scholar
  22. 22.
    El-Nikhely, N., Helmy, M., Saeed, H.M., Abou Shama, L.A., Abd El-Rahman, Z.: Ricin a chain from Ricinus sanguineus: DNA sequence, structure and toxicity. Protein J. 26, 481–489 (2007)CrossRefGoogle Scholar
  23. 23.
    Duriez, E., Armengaud, J., Fenaille, F., Ezan, E.: Mass spectrometry for the detection of bioterrorism agents: from environmental to clinical applications. J. Mass Spectrom. 51, 183–199 (2016)CrossRefGoogle Scholar
  24. 24.
    Stevenson, R.L.: Sample preparation for liquid chromatography-mass spectrometry. Am. Lab. 44, 36–38 (2012)Google Scholar
  25. 25.
    Ferguson, C.N., Benchaar, S.A., Miao, Z.X., Loo, J.A., Chen, H.: Direct ionization of large proteins and protein complexes by desorption electrospray ionization-mass spectrometry. Anal. Chem. 83, 6468–6473 (2011)CrossRefGoogle Scholar
  26. 26.
    Stokes, A.A., Clarke, D.J., Weidt, S., Langridge-Smith, P., Mackay, C.L.: Top-down protein sequencing by CID and ECD using desorption electrospray ionisation (DESI) and high-field FTICR mass spectrometry. Int. J. Mass Spectrom. 289, 54–57 (2010)CrossRefGoogle Scholar
  27. 27.
    Nedelkov, D., Nelson, R.W.: Detection of staphylococcal enterotoxin B via biomolecular interaction analysis mass spectrometry. Appl. Environ. Microbiol. 69, 5212–5215 (2003)CrossRefGoogle Scholar
  28. 28.
    Alam, S.I., Kumar, B., Kamboj, D.V.: Multiplex detection of protein toxins using MALDI-TOF-TOF tandem mass spectrometry: application in unambiguous toxin detection from bioaerosol. Anal. Chem. 84, 10500–10507 (2012)CrossRefGoogle Scholar
  29. 29.
    Manicke, N.E., Yang, Q., Wang, H., Oradu, S., Ouyang, Z., Cooks, R.G.: Assessment of paper spray ionization for quantitation of pharmaceuticals in blood spots. Int. J. Mass Spectrom. 300, 123–129 (2011)CrossRefGoogle Scholar
  30. 30.
    Su, Y., Wang, H., Liu, J., Wei, P., Cooks, R.G., Ouyang, Z.: Quantitative paper spray mass spectrometry analysis of drugs of abuse. Analyst. 138, 4443–4447 (2013)CrossRefGoogle Scholar
  31. 31.
    Mckenna, J., Dhummakupt, E.S., Connell, T., Demond, P., Miller, D.B., Nilles, J.M., Manicke, N., Glaros, T.: Detection of chemical warfare agent simulants and hydrolysis products in biological samples by paper spray mass spectrometry. Analyst. 142, 1442–1451 (2017)CrossRefGoogle Scholar
  32. 32.
    Liu, J., Wang, H., Manicke, N.E., Lin, J.-M., Cooks, R.G., Ouyang, Z.: Development, characterization, and application of paper spray ionization. Anal. Chem. 82, 2463–2471 (2010)CrossRefGoogle Scholar
  33. 33.
    Wang, H., Manicke, N.E., Yang, Q., Zheng, L., Shi, R., Cooks, R.G., Ouyang, Z.: Direct analysis of biological tissue by paper spray mass spectrometry. Anal. Chem. 83, 1197–1201 (2011)CrossRefGoogle Scholar
  34. 34.
    Evard, H., Kruve, A., Lõhmus, R., Leito, I.: Paper spray ionization mass spectrometry: study of a method for fast-screening analysis of pesticides in fruits and vegetables. J. Food Compos. Anal. 41, 221–225 (2015)CrossRefGoogle Scholar
  35. 35.
    Lin, C.-H., Liao, W.-C., Chen, H.-K., Kuo, T.-Y.: Paper spray-MS for bioanalysis. Bioanalysis. 6, 199–208 (2014)CrossRefGoogle Scholar
  36. 36.
    Dhummakupt, E.S., Mach, P.M., Carmany, D., Demond, P.S., Moran, T.S., Connell, T., Wylie, H.S., Manicke, N.E., Nilles, J.M., Glaros, T.: Direct analysis of aerosolized chemical warfare simulants captured on a modified glass-based substrate by “paper-spray” ionization. Anal. Chem. 89, 10866–10872 (2017)CrossRefGoogle Scholar
  37. 37.
    Han, F., Yang, Y., Ouyang, J., Na, N.: Direct analysis of in-gel proteins by carbon nanotubes-modified paper spray ambient mass spectrometry. Analyst. 140, 710–715 (2015)CrossRefGoogle Scholar
  38. 38.
    Narayanan, R., Sarkar, D., Cooks, R.G., Pradeep, T.: Molecular ionization from carbon nanotube paper. Angew. Chem. Int. Ed. 53, 5936–5940 (2014)CrossRefGoogle Scholar
  39. 39.
    Zheng, Y., Zhang, X., Yang, H., Liu, X., Zhang, X., Wang, Q., Zhang, Z.: Facile preparation of paper substrates coated with different materials and their applications in paper spray mass spectrometry. Anal. Methods. 7, 5381–5386 (2015)CrossRefGoogle Scholar
  40. 40.
    Zhang, M., Lin, F., Xu, J., Xu, W.: Membrane electrospray ionization for direct ultrasensitive biomarker quantitation in biofluids using mass spectrometry. Anal. Chem. 87, 3123–3128 (2015)CrossRefGoogle Scholar
  41. 41.
    Hu, B., Yao, Z.-P.: Mobility of proteins in porous substrates under electrospray ionization conditions. Anal. Chem. 88, 5585–5589 (2016)CrossRefGoogle Scholar
  42. 42.
    Zhang, C., Glaros, T., Manicke, N.E.: Targeted protein detection using an all-in-one mass spectrometry cartridge. J. Am. Chem. Soc. 139, 10996–10999 (2017)CrossRefGoogle Scholar
  43. 43.
    Lowell, G.H., Kaminski, R.W., Grate, S., Hunt, R.E., Charney, C., Zimmer, S., Colleton, C.: Intranasal and intramuscular proteosome-staphylococcal enterotoxin B (SEB) toxoid vaccines: immunogenicity and efficacy against lethal SEB intoxication in mice. Infect. Immun. 64, 1706–1713 (1996)Google Scholar
  44. 44.
    Boles, J.W., Pitt, M.L.M., Leclaire, R.D., Gibbs, P.H., Torres, E., Dyas, B., Ulrich, R.G., Bavari, S.: Generation of protective immunity by inactivated recombinant staphylococcal enterotoxin B vaccine in nonhuman primates and identification of correlates of immunity. Clin. Immunol. 108, 51–59 (2003)CrossRefGoogle Scholar
  45. 45.
    Ohr, R., Schug, C., Wahl, M., Wienss, A., Hilgers, H., Mahrholz, J., Willich, P., Jung, T.: Analytical characterization of thin carbon films. Anal. Bioanal. Chem. 375, 47–52 (2003)CrossRefGoogle Scholar
  46. 46.
    Zhang, Z., Marshall, A.G.: A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. J. Am. Soc. Mass Spectrom. 9, 225–233 (1998)CrossRefGoogle Scholar
  47. 47.
    Golan, Y., Margulis, L., Rubinstein, I.: Vacuum-deposited gold-films .1. Factors affecting the film morphology. Surf. Sci. 264, 312–326 (1992)CrossRefGoogle Scholar
  48. 48.
    Han, D.H., Crouch, G.M., Fu, K.Y., Zaino, L.P., Bohn, P.W.: Single-molecule spectroelectrochemical cross-correlation during redox cycling in recessed dual ring electrode zero-mode waveguides. Chem. Sci. 8, 5345–5355 (2017)CrossRefGoogle Scholar
  49. 49.
    Libansky, M., Zima, J., Barek, J., Reznickova, A., Svorcik, V., Dejmkova, H.: Basic electrochemical properties of sputtered gold film electrodes. Electrochim. Acta. 251, 452–460 (2017)CrossRefGoogle Scholar
  50. 50.
    Wichert, W.R.A., Han, D., Bohn, P.W.: Effects of molecular confinement and crowding on horseradish peroxidase kinetics using a nanofluidic gradient mixer. Lab Chip. 16, 877–883 (2016)CrossRefGoogle Scholar
  51. 51.
    Chowdhury, S.K., Katta, V., Chait, B.T.: An electrospray-ionization mass-spectrometer with new features. Rapid Commun. Mass Spectrom. 4, 81–87 (1990)CrossRefGoogle Scholar
  52. 52.
    Gallagher, R.T., Chapman, J.R., Mann, M.: Design and performance of an electrospray ionization source for a doubly-focusing magnetic-sector mass-spectrometer. Rapid Commun. Mass Spectrom. 4, 369–372 (1990)CrossRefGoogle Scholar
  53. 53.
    Mcluckey, S.A., Vanberkel, G.J., Glish, G.L., Huang, E.C., Henion, J.D.: Ion spray liquid-chromatography ion trap mass-spectrometry determination of biomolecules. Anal. Chem. 63, 375–383 (1991)CrossRefGoogle Scholar
  54. 54.
    Keller, B.O., Sui, J., Young, A.B., Whittal, R.M.: Interferences and contaminants encountered in modern mass spectrometry. Anal. Chim. Acta. 627, 71–81 (2008)CrossRefGoogle Scholar
  55. 55.
    Rusnak, J.M., Kortepeter, M., Ulrich, R., Poli, M., Boudreau, E.: Laboratory exposures to Staphylococcal enterotoxin B. Emerg. Infect. Dis. 10, 1544–1549 (2004)CrossRefGoogle Scholar
  56. 56.
    US Army Publication Directorate: Chemical, biological, radiological, nuclear and explosives command (CBRNE COMMAND). Publication Number ATP 3–37.11 (2018)Google Scholar
  57. 57.
    Pulliam, C.J., Bain, R.M., Wiley, J.S., Ouyang, Z., Cooks, R.G.: Mass spectrometry in the home and garden. J. Am. Soc. Mass Spectrom. 26, 224–230 (2015)CrossRefGoogle Scholar
  58. 58.
    Lawton, Z.E., Traub, A., Fatigante, W.L., Mancias, J., O’leary, A.E., Hall, S.E., Wieland, J.R., Oberacher, H., Gizzi, M.C., Mulligan, C.C.: Analytical validation of a portable mass spectrometer featuring interchangeable, ambient ionization sources for high throughput forensic evidence screening. J. Am. Soc. Mass Spectrom. 28, 1048–1059 (2017)CrossRefGoogle Scholar
  59. 59.
    Fedick, P., Fatigante, W., Lawton, Z., O’leary, A., Hall, S., Bain, R., Ayrton, S., Ludwig, J., Mulligan, C.: A low-cost, simplified platform of interchangeable, ambient ionization sources for rapid, forensic evidence screening on portable mass spectrometric instrumentation. Instruments. 2, 5 (2018)CrossRefGoogle Scholar
  60. 60.
    Silva, L.C., Pereira, I., Carvalho, T.C., Allochio Filho, J.F., Romão, W., Gontijo Vaz, B.: Paper spray ionization and portable mass spectrometers: a review. Anal. Methods. 11, 999–1013 (2019)Google Scholar
  61. 61.
    Devereaux, Z.J., Reynolds, C.A., Fischer, J.L., Foley, C.D., Deleeuw, J.L., Wager-Miller, J., Narayan, S.B., Mackie, K., Trimpin, S.: Matrix-assisted ionization on a portable mass spectrometer: analysis directly from biological and synthetic materials. Anal. Chem. 88, 10831–10836 (2016)CrossRefGoogle Scholar
  62. 62.
    Zhai, Y.B., Liu, S.Y., Gao, L.J., Hu, L.L., Xu, W.: Direct biological sample analyses by laserspray ionization miniature mass spectrometry. Anal. Chem. 90, 5696–5702 (2018)CrossRefGoogle Scholar
  63. 63.
    Janfelt, C., Talaty, N., Mulligan, C.C., Keil, A., Ouyang, Z., Cooks, R.G.: Mass spectra of proteins and other biomolecules recorded using a handheld instrument. Int. J. Mass Spectrom. 278, 166–169 (2008)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical BiologyIndiana University-Purdue University IndianapolisIndianapolisUSA
  2. 2.Combat Capabilities Development Command (CCDC) Chemical Biological CenterU.S. ArmyAberdeen Proving GroundUSA
  3. 3.Defense Threat Reduction AgencyFort BelvoirUSA

Personalised recommendations