Simulation of Unidirectional Ion Ejection in an Asymmetric Half-Round Rod Electrode Linear Ion Trap Mass Analyzer

  • HaiYan Wu
  • LiPeng Zhang
  • ZaiYue Zhang
  • Jie Qian
  • ShuGuang Zhang
  • YingJun Zhang
  • SaiJin Ge
  • XiaoXu LiEmail author
Research Article


An asymmetric trapping field was generated from an asymmetric half-round rod electrode linear ion trap (A-HreLIT), and its performance of unidirectional ion ejection was studied. Two different asymmetric structures of A-HreLITs were constructed, one rotating y electrode pairs toward an x electrode with an angle θ, and the other stretching one x electrode with a distance α. The center of trapping field was displaced away from the geometrical center of the ion trap, defined to be the midpoint along the axis of y between x electrodes, which leads to unidirectional ion ejection through one x electrode. Computer simulations were used to investigate the relationship between asymmetric geometric parameter of θ (or α) and analytical performance. Both structures could result in similar asymmetric trapping fields, which mainly composed of dipole, quadrupole, and hexapole fields. The dipole and hexapole fields were approximately proportional to the asymmetric geometric parameter of rotation angle θ (or stretch distance α). In simulation, ion trajectories and ion kinetic energy were calculated. For ions with m/z 609 Th, the simulation results showed that mass resolution of over 2400 (FWHM) and ion unidirectional ejection efficiency of nearly 90% were achieved in an optimized A-HreLIT. Ion detection efficiency of A-HreLIT could be improved significantly with only one ion detector, while maintaining a considerable mass resolution. Furthermore, the A-HreLIT could be driven by a traditional balanced RF power supply. These advantages make A-HreLIT suitable for developing miniaturized mass spectrometer with high performance.

Graphical Abstract


Unidirectional ion ejection Asymmetric geometry Ion detection efficiency Miniaturization Odd-order fields 


Funding Information

This study is supported by and funded by the Natural Science Foundation of China (61601314).


  1. 1.
    Hager, J.W.: A new linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 16, 512–526 (2002)CrossRefGoogle Scholar
  2. 2.
    Hager, J.W.: Off-resonance excitation in a linear ion trap. J. Am. Soc. Mass Spectrom. 20, 443–450 (2009)CrossRefPubMedGoogle Scholar
  3. 3.
    Schwartz, J.C., Senko, M.W., Syka, J.E.P.: A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 13, 659–669 (2002)CrossRefPubMedGoogle Scholar
  4. 4.
    Ouyang, Z., Wu, G.X., Song, Y.S., Li, H.Y., Plass, W.R., Cooks, R.G.: Rectilinear ion trap: concepts, calculations, and analytical performance of a new mass analyzer. Anal. Chem. 76, 4595–4605 (2004)CrossRefPubMedGoogle Scholar
  5. 5.
    Song, Q.Y., Kothari, S., Senko, M.A., Schwartz, J.C., Amy, J.W., Stafford, G.C., Cooks, R.G., Ouyang, Z.: Rectilinear ion trap mass spectrometer with atmospheric pressure interface and electrospray ionization source. Anal. Chem. 78, 718–725 (2006)CrossRefPubMedGoogle Scholar
  6. 6.
    Li, X.X., Jiang, G.Y., Luo, C., Xu, F.X., Wang, Y.Y., Ding, L., Ding, C.F.: Ion trap array mass analyzer: structure and performance. Anal. Chem. 81, 4840–4846 (2009)CrossRefPubMedGoogle Scholar
  7. 7.
    Sudakov, M.Y., Apatskaya, M.V., Vitukhin, V.V., Trubitsyn, A.A.: A new linear ion trap with simple electrodes. J. Anal. Chem. 67, 1057–1065 (2012)CrossRefGoogle Scholar
  8. 8.
    Xiao, Y., Ding, Z., Xu, C., Dai, X., Fang, X., Ding, C.-F.: Novel linear ion trap mass analyzer built with triangular electrodes. Anal. Chem. 86, 5733–5739 (2014)CrossRefPubMedGoogle Scholar
  9. 9.
    Jiang, D., Jiang, G.Y., Li, X.X., Xu, F.X., Wang, L., Ding, L., Ding, C.F.: Printed circuit board ion trap mass analyzer: its structure and performance. Anal. Chem. 85, 6041–6046 (2013)CrossRefPubMedGoogle Scholar
  10. 10.
    Li, X.X., Zhang, X.H., Yao, R.J., He, Y., Zhu, Y.Y., Qian, J.: Design and performance evaluation of a linear ion trap mass analyzer featuring half round rod electrodes. J. Am. Soc. Mass Spectrom. 26, 734–740 (2015)CrossRefPubMedGoogle Scholar
  11. 11.
    Gao, L., Song, Q.Y., Patterson, G.E., Cooks, R.G., Ouyang, Z.: Handheld rectilinear ion trap mass spectrometer. Anal. Chem. 78, 5994–6002 (2006)CrossRefPubMedGoogle Scholar
  12. 12.
    Peng, Y., Austin, D.E.: New approaches to miniaturizing ion trap mass analyzers. Trac-Trends Analytical Chemistry. 30, 1560–1567 (2011)CrossRefGoogle Scholar
  13. 13.
    Blain, M.G., Riter, L.S., Cruz, D., Austin, D.E., Wu, G.X., Plass, W.R., Cooks, R.G.: Towards the hand-held mass spectrometer: design considerations, simulation, and fabrication of micrometer-scaled cylindrical ion traps. Int. J. Mass Spectrom. 236, 91–104 (2004)CrossRefGoogle Scholar
  14. 14.
    Schwartz, J.C., Syka, J.E.P., Jardine, I.: High-resolution on a quadrupole ion trap mass-spectrometer. J. Am. Soc. Mass Spectrom. 2, 198–204 (1991)CrossRefPubMedGoogle Scholar
  15. 15.
    Splendore, M., Marquette, E., Oppenheimer, J., Huston, C., Wells, G.: A new ion ejection method employing an asymmetric trapping field to improve the mass scanning performance of an electrodynamic ion trap. Int. J. Mass Spectrom. 191, 129–143 (1999)CrossRefGoogle Scholar
  16. 16.
    Ding, C.F., Konenkov, N.V., Douglas, D.J.: Quadrupole mass filters with octopole fields. Rapid Commun. Mass Spectrom. 17, 2495–2502 (2003)CrossRefPubMedGoogle Scholar
  17. 17.
    Remes, P.M., Syka, J.E.P., Kovtoun, V.V., Schwartz, J.C.: Insight into the resonance ejection process during mass analysis through simulations for improved linear quadrupole ion trap mass spectrometer performance. Int. J. Mass Spectrom. 370, 44–57 (2014)CrossRefGoogle Scholar
  18. 18.
    Zheng, O.Y., Badman, E.R., Cooks, R.G.: Characterization of a serial array of miniature cylindrical ion trap mass analyzers. Rapid Commun. Mass Spectrom. 13, 2444–2449 (1999)CrossRefGoogle Scholar
  19. 19.
    Badman, E.R., Johnson, R.C., Plass, W.R., Cooks, R.G.: A miniature cylindrical quadrupole ion trap: simulation and experiment. Anal. Chem. 70, 4896–4901 (1998)CrossRefPubMedGoogle Scholar
  20. 20.
    Patterson, G.E., Guymon, A.J., Riter, L.S., Everly, M., Griep-Raming, J., Laughlin, B.C., Zheng, O.Y., Cooks, R.G.: Miniature cylindrical ion trap mass spectrometer. Anal. Chem. 74, 6145–6153 (2002)CrossRefPubMedGoogle Scholar
  21. 21.
    Sekiguchi, H., Matsushita, K., Yamashiro, S., Sano, Y., Seto, Y., Okuda, T., Sato, A.: On-site determination of nerve and mustard gases using a field-portable gas chromatograph-mass spectrometer. Forensic Toxicology. 24, 17–22 (2006)CrossRefGoogle Scholar
  22. 22.
    Wang, Y.Z., Huang, Z.J., Jiang, Y., Xiong, X.C., Deng, Y.L., Fang, X., Xu, W.: The coupling effects of hexapole and octopole fields in quadrupole ion traps: a theoretical study. J. Mass Spectrom. 48, 937–944 (2013)CrossRefPubMedGoogle Scholar
  23. 23.
    Zeleny, J.: The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys. Rev. 3, 69–91 (1914)CrossRefGoogle Scholar
  24. 24.
    March, R.E.: Quadrupole ion traps. Mass Spectrom. Rev. 28, 961–989 (2009)CrossRefPubMedGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.School of Mechanical and Electrical EngineeringSoochow UniversitySuzhouChina

Personalised recommendations