Advertisement

A Mass Spectrometer in Every Fume Hood

  • Ethan M. McBride
  • Guido F. Verbeck
Critical Insight

Abstract

Since their inception, mass spectrometers have played a pivotal role in the direction and application of synthetic chemical research. The ability to develop new instrumentation to solve current analytical challenges in this area has always been at the heart of mass spectrometry, although progress has been slow at times. Herein, we briefly review the history of how mass spectrometry has been used to approach challenges in organic chemistry, how new developments in portable instrumentation and ambient ionization have been used to open novel areas of research, and how current techniques have the ability to expand on our knowledge of synthetic mechanisms and kinetics. Lastly, we discuss the relative paucity of work done in recent years to embrace the concept of improving benchtop synthetic chemistry with mass spectrometry, the disconnect between applications and fundamentals within these studies, and what hurdles still need to be overcome.

Graphical Abstract

Keywords

Synthesis Direct inject Mass spectrometry 

References

  1. 1.
    Nier, A.O.: Evidence for the existence of an isotope of potassium of mass 40. Phys. Rev. 48, 283–284 (1935)CrossRefGoogle Scholar
  2. 2.
    Nier, A.O.: The Isotopic Constitution of Rubidium, Zinc and Argon. Phys. Rev. 49, 272–272 (1936)CrossRefGoogle Scholar
  3. 3.
    Belyakov, P.A., Kadentsev, V.I., Chizhov, A.O., Kolotyrkina, N.Y.G., Shashkov, A.S., Ananikov, V.P.: Mechanistic insight into organic and catalytic reactions by joint studies using mass spectrometry and NMR spectroscopy. Mendeleev Commun. 20, 125–131 (2010)CrossRefGoogle Scholar
  4. 4.
    Selected values of physical and thermodynamic properties of hydrocarbons and related compounds: comprising the tables of the American petroleum institute research project 44 extant as of December 31, 1952. J. Chem. Educ. 31, 52 (1954)Google Scholar
  5. 5.
    Eliel, E.L., Prosser, T.J., Young, G.W.: The use of mass spectrometry in organic analysis. J. Chem. Educ. 34, 72 (1957)CrossRefGoogle Scholar
  6. 6.
    James, A.T., Martin, A.J.: Gas-liquid partition chromatography; the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem. J. 50, 679–690 (1952)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ryhage, R.: Use of a mass spectrometer as a detector and analyzer for effluents emerging from high temperature gas liquid chromatography columns. Anal. Chem. 36, 759–764 (1964)CrossRefGoogle Scholar
  8. 8.
    Watson, J.T., Biemann, K.: High-Resolution Mass Spectra of Compounds Emerging from a Gas Chromatograph. Anal. Chem. 36, 1135–1137 (1964)CrossRefGoogle Scholar
  9. 9.
    Friedel, R.A., Sharkey, A.G.: Mass Spectra of Acetal-Type Compounds. Anal. Chem. 28, 940–944 (1956)CrossRefGoogle Scholar
  10. 10.
    Friedel, R.A., Shultz, J.L., Sharkey, A.G.: Mass Spectra of Alcohols. Anal. Chem. 28, 926–934 (1956)CrossRefGoogle Scholar
  11. 11.
    Friedland, S.S., Lane, G.H., Longman, R.T., Train, K.E., O'Neal, M.J.: Mass Spectra of Steroids. Anal. Chem. 31, 169–174 (1959)CrossRefGoogle Scholar
  12. 12.
    Bruun, H.H., Ryhage, R., Stenhagen, E.: Mass Spectrometric Studies on Esters of Rosin Acids. Acta Chem. Scand. 12, 1355 (1958)CrossRefGoogle Scholar
  13. 13.
    Weitkamp, A.W., Smiljanic, A.M., Rothman, S.: The Free Fatty Acids of Human Hair Fat. J. Am. Chem. Soc. 69, 1936–1939 (1947)CrossRefPubMedGoogle Scholar
  14. 14.
    Brown, R.A., Young, W.S.: Analysis of high molecular weight alcohols by the mass spectrometer. Anal. Chem. 26, 1653–1654 (1954)Google Scholar
  15. 15.
    Wheeler, D.M.S., Kinstle, T.H., Rinehart, K.L.: Mass spectral studies of alkaloids related to morphine. J. Am. Chem. Soc. 89, 4494–4501 (1967)CrossRefPubMedGoogle Scholar
  16. 16.
    Fales, H.M., Lloyd, H.A., Milne, G.W.A.: Chemical ionization mass spectrometry of complex molecules. II. Alkaloids. J. Am. Chem. Soc. 92, 1590–1597 (1970)CrossRefPubMedGoogle Scholar
  17. 17.
    Duffield, A.M., Aplin, R.T., Budzikiewicz, H., Djerassi, C., Murphy, C.F., Wildman, W.C.: Mass spectrometry in structural and stereochemical problems. LXXXII. A study of the fragmentation of some Amaryllidaceae alkaloids. J. Am. Chem. Soc. 87, 4902–4912 (1965)CrossRefPubMedGoogle Scholar
  18. 18.
    Roush, R.A., Cooks, R.G.: Characterization of Alkaloids and Other Secondary Metabolites by Multiple Stage Mass Spectrometry. J. Nat. Prod. 47, 197–214 (1984)CrossRefGoogle Scholar
  19. 19.
    Cooks, R.G., Warren, F.L., Williams, D.H.: Rhizophoraceae alkaloids. III. Cassipourine. J. Chem. Soc. C. 0, 286–288 (1967)Google Scholar
  20. 20.
    Wróbel, J.T., Gliński, J.A.: Stereospecifïc total synthesis of (±)-cassipurine, an alkaloid from rhizophoraceae. Can. J. Chem. 59, 1101–1104 (1981)CrossRefGoogle Scholar
  21. 21.
    Cooks, R.G., Johnson, G.S.: Natural products; including oligopeptides, oligonucleotides, and oligosaccharides. In: Williams DH (1st ed.). The Royal Society of Chemistry, (1971)Google Scholar
  22. 22.
    Beynon, J.H., Cooks, R.G., Amy, J.W., Baitinger, W.E., Ridley, T.Y.: Design and Performance of a Mass-analyzed Ion Kinetic Energy (MIKE) Spectrometer. Anal. Chem. 45, 1023A–1031A (1973)CrossRefGoogle Scholar
  23. 23.
    Kruger, T.L., Litton, J.F., Kondrat, R.W., Cooks, R.G.: Mixture analysis by mass-analyzed ion kinetic energy spectrometry. Anal. Chem. 48, 2113–2119 (1976)CrossRefGoogle Scholar
  24. 24.
    Kondrat, R.W., McClusky, G.A., Cooks, R.G.: Multiple reaction monitoring in mass spectrometry/mass spectrometry for direct analysis of complex mixtures. Anal. Chem. 50, 2017–2021 (1978)CrossRefGoogle Scholar
  25. 25.
    House, H.O., Kramar, V.: The chemistry of carbanions. V. The enolates derived from unsymmetrical ketones. J. Org. Chem. 28, 3362–3379 (1963)CrossRefGoogle Scholar
  26. 26.
    Hughes, J., Smith, T.W., Kosterlitz, H.W., Fothergill, L.A., Morgan, B.A., Morris, H.R.: Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature. 258, 577–579 (1975)CrossRefPubMedGoogle Scholar
  27. 27.
    Burgus, R., Butcher, M., Amoss, M., Ling, N., Monahan, M., Rivier, J., Fellows, R., Blackwell, R., Vale, W., Guillemin, R.: Primary structure of the ovine hypothalamic luteinizing hormone-releasing factor (LRF) (LH-hypothalamus-LRF-gas chromatography-mass spectrometry-decapeptide-Edman degradation). Proc. Natl. Acad. Sci. U. S. A. 69, 278–282 (1972)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    McLafferty, F.W., Venkataraghavan, R., Irving, P.: Determination of amino acid sequences in peptide mixtures by mass spectrometry. Biochem. Biophys. Res. Commun. 39, 274–278 (1970)CrossRefPubMedGoogle Scholar
  29. 29.
    Fernlund, P., Josefsson, L.: Crustacean color-change hormone: amino acid sequence and chemical synthesis. Science. 177, 173–175 (1972)CrossRefPubMedGoogle Scholar
  30. 30.
    Games, D.E., Hirter, P., Kuhnz, W., Lewis, E., Weerasinghe, N.C.A., Westwood, S.A.: Studies of combined liquid chromatography-mass spectrometry with a moving-belt interface. J/ Chromatogr. A. 203, 131–138 (1981)Google Scholar
  31. 31.
    Games, D.E., Alcock, N.J., Cobelli, L., Eckers, C., Games, M.P.L., Jones, A., Lant, M.S., McDowall, M.A., Rossiter, M., Smith, R.A., Westwood, S.A., Wong, H.Y.: LC/MS studies with moving belt interfaces. Int. J. Mass Spectrom. Ion Phys. 46, 181–184 (1983)CrossRefGoogle Scholar
  32. 32.
    McFadden, W.H., Bradford, D.C., Eglinton, G., Hajlbrahim, S.K., Nicolaides, N.: Application of Combined Liquid Chromatography/Mass Spectrometry (LC/MS): Analysis of Petroporphyrins and Meibomian Gland Waxes. J. Chromatogr. Sci. 17, 518–522 (1979)CrossRefPubMedGoogle Scholar
  33. 33.
    Henion, J.D., Thomson, B.A., Dawson, P.H.: Determination of sulfa drugs in biological fluids by liquid chromatography/mass spectrometry/mass spectrometry. Anal. Chem. 54, 451–456 (1982)CrossRefPubMedGoogle Scholar
  34. 34.
    Crowther, J.B., Henion, J.D.: Supercritical fluid chromatography of polar drugs using small-particle packed columns with mass spectrometric detection. Anal. Chem. 57, 2711–2716 (1985)CrossRefPubMedGoogle Scholar
  35. 35.
    Niessen, W.M.A.: A review of direct liquid introduction interfacing for LC/MS. Part I. Instrumental aspects. Chromatographia. 21, 277–287 (1986)CrossRefGoogle Scholar
  36. 36.
    Vestal, M.L., Fergusson, G.J.: Thermospray liquid chromatograph/mass spectrometer interface with direct electrical heating of the capillary. Anal. Chem. 57, 2373–2378 (1985)CrossRefPubMedGoogle Scholar
  37. 37.
    Blakley, C.R., Vestal, M.L.: Thermospray interface for liquid chromatography/mass spectrometry. Anal. Chem. 55, 750–754 (1983)CrossRefGoogle Scholar
  38. 38.
    Volk, K.J., Yost, R.A., Brajter-Toth, A.: On-line electrochemistry/thermospray/tandem mass spectrometry as a new approach to the study of redox reactions: the oxidation of uric acid. Anal. Chem. 61, 1709–1717 (1989)CrossRefPubMedGoogle Scholar
  39. 39.
    Barber, M., Bordoli, R.S., Sedgwick, R.D., Tyler, A.N.: Fast atom bombardment of solids as an ion source in mass spectrometry. Nature (London). 293, 270–275 (1981)CrossRefGoogle Scholar
  40. 40.
    Williams, D.H., Bradley, C., Bojesen, G., Santikarn, S., Taylor, L.C.E.: Fast atom bombardment mass spectrometry: a powerful technique for the study of polar molecules. J. Am. Chem. Soc. 103, 5700–5704 (1981)CrossRefGoogle Scholar
  41. 41.
    Barber, M., Bordoli, R.S., Garner, G.V., Gordon, D.B., Sedgwick, R.D., Tetler, L.W., Tyler, A.N.: Fast-atom-bombardment mass spectra of enkephalins. Biochem. J. 197, 401–404 (1981)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hsieh, Y.L., Cai, J., Li, Y.T., Henion, J.D., Ganem, B.: Detection of noncovalent FKBP-FK506 and FKBP-Rapamycin complexes by capillary electrophoresis-mass spectrometry and capillary electrophoresis-tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 6, 85–90 (1995)CrossRefPubMedGoogle Scholar
  43. 43.
    Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., Nishioka, T.: Quantitative Metabolome Analysis Using Capillary Electrophoresis Mass Spectrometry. J. Proteome Res. 2, 488–494 (2003)CrossRefPubMedGoogle Scholar
  44. 44.
    Cai, J., Henion, J.: Capillary electrophoresis-mass spectrometry. J. Chromatogr. A. 703, 667–692 (1995)CrossRefGoogle Scholar
  45. 45.
    Moseley, M.A., Deterding, L.J., Tomer, K.B., Jorgenson, J.W.: Determination of bioactive peptides using capillary zone electrophoresis/mass spectrometry. Anal. Chem. 63, 109–114 (1991)CrossRefPubMedGoogle Scholar
  46. 46.
    Dole, M., Mack, L.L., Hines, R.L., Mobley, R.C., Ferguson, L.D., Alice, M.B.: Molecular Beams of Macroions. J. Chem. Phys. 49, 2240–2249 (1968)CrossRefGoogle Scholar
  47. 47.
    Fenn, J., Mann, M., Meng, C., Wong, S., Whitehouse, C.: Electrospray ionization for mass spectrometry of large biomolecules. Science. 246, 64–71 (1989)CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Cech, N.B., Enke, C.G.: Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 20, 362–387 (2002)CrossRefGoogle Scholar
  49. 49.
    Han, X., Gross, R.W.: Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev. 24, 367–412 (2005)CrossRefPubMedGoogle Scholar
  50. 50.
    Smith, R.D., Loo, J.A., Edmonds, C.G., Barinaga, C.J., Udseth, H.R.: New developments in biochemical mass spectrometry: electrospray ionization. Anal. Chem. 62, 882–899 (1990)CrossRefPubMedGoogle Scholar
  51. 51.
    Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yohida, T.: Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153 (1988)Google Scholar
  52. 52.
    Lebedev, A.T., Zaikin, V.G.: Organic mass spectrometry at the beginning of the 21st century. J. Anal. Chem. 63, 1128 (2008)CrossRefGoogle Scholar
  53. 53.
    Li, L., Garden, R.W., Sweedler, J.V.: Single-cell MALDI: a new tool for direct peptide profiling. Trends Biotechnol. 18, 151–160 (2000)CrossRefPubMedGoogle Scholar
  54. 54.
    Schwartz, S.A., Reyzer, M.L., Caprioli, R.M.: Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: Practical aspects of sample preparation. J. Mass Spectrom. 38, 699–708 (2003)CrossRefPubMedGoogle Scholar
  55. 55.
    McLean, J.A., Stumpo, K.A., Russell, D.H.: Size-Selected (2−10 nm) Gold Nanoparticles for Matrix Assisted Laser Desorption Ionization of Peptides. J. Am. Chem. Soc. 127, 5304–5305 (2005)CrossRefPubMedGoogle Scholar
  56. 56.
    McLafferty, F.W.: Interpretation of Mass Spectra; An Introduction. In: McLafferty FW (1st ed.). W.A. Benjamin, New York (1966)Google Scholar
  57. 57.
    Beynon, J.H.: Mass Spectrometry and its Applications to Organic Chemistry. In: Beynon, JH (1st Ed.). Elsevier, Amsterdam (1960)Google Scholar
  58. 58.
    Breindahl, T., Kimergard, A., Andreasen, M.F., Pedersen, D.S.: Identification of a new psychoactive substance in seized material: the synthetic opioid N-phenyl-N-[1-(2-phenethyl)piperidin-4-yl]prop-2-enamide (Acrylfentanyl). Drug Test. Anal. 9, 415–422 (2017)CrossRefPubMedGoogle Scholar
  59. 59.
    Garg, A., Solas, D.W., Takahashi, L.H., Cassella, J.V.: Forced degradation of fentanyl: identification and analysis of impurities and degradants. J. Pharm. Biomed. Anal. 53, 325–334 (2010)CrossRefPubMedGoogle Scholar
  60. 60.
    Lurie, I.S., Berrier, A.L., Casale, J.F., Iio, R., Bozenko Jr., J.S.: Profiling of illicit fentanyl using UHPLC-MS/MS. Forensic Sci. Int. 220, 191–196 (2012)CrossRefPubMedGoogle Scholar
  61. 61.
    Moore, K.A., Lichtman, A.H., Poklis, A., Borzelleca, J.F.: α-Benzyl-N-methylphenethylamine (BNMPA), an impurity of illicit methamphetamine synthesis: pharmacological evaluation and interaction with methamphetamine. Drug Alcohol Depend. 39, 83–89 (1995)CrossRefPubMedGoogle Scholar
  62. 62.
    Nic Daéid, N., Waddell, R.J.H.: The analytical and chemometric procedures used to profile illicit drug seizures. Talanta. 67, 280–285 (2005)CrossRefPubMedGoogle Scholar
  63. 63.
    Stojanovska, N., Fu, S., Tahtouh, M., Kelly, T., Beavis, A., Kirkbride, K.P.: A review of impurity profiling and synthetic route of manufacture of methylamphetamine, 3,4-methylenedioxymethylamphetamine, amphetamine, dimethylamphetamine and p-methoxyamphetamine. Forensic Sci. Int. 224, 8–26 (2013)CrossRefPubMedGoogle Scholar
  64. 64.
    Kunalan, V., Nic Daéid, N., Kerr, W.J., Buchanan, H.A.S., McPherson, A.R.: Characterization of Route Specific Impurities Found in Methamphetamine Synthesized by the Leuckart and Reductive Amination Methods. Anal. Chem. 81, 7342–7348 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Angelos, S., Raney, J., Skowronski, G., Wagenhofer, R.: The identification of unreacted precursors, impurities, and by-products in clandestinely produced phencyclidine preparations. J. Forensic Sci. 35, 1297-1302 (1990)Google Scholar
  66. 66.
    Xu, Y., Zhang, D.-Y., Meng, X.-Y., Liu, X., Sheng, S., Wu, G.-H., Wang, J., Wu, F.-A.: Generic DART-MS platform for monitoring the on-demand continuous-flow production of pharmaceuticals: Advancing the quantitative protocol for caffeates in microfluidic biocatalysis. J. Pharm. Biomed. Anal. 137, 243–251 (2017)CrossRefPubMedGoogle Scholar
  67. 67.
    Cecinato, A., Balducci, C., Perilli, M.: Illicit psychotropic substances in the air: The state-of-art. Sci. Total Environ. 539, 1–6 (2016)CrossRefPubMedGoogle Scholar
  68. 68.
    Fernandez, F.M., Cody, R.B., Green, M.D., Hampton, C.Y., McGready, R., Sengaloundeth, S., White, N.J., Newton, P.N.: Characterization of solid counterfeit drug samples by desorption electrospray ionization and direct-analysis-in-real-time coupled to time-of-flight mass spectrometry. Chem. Med. Chem. 1, 702–705 (2006)CrossRefPubMedGoogle Scholar
  69. 69.
    Chen, T.-H., Hsu, H.-Y., Wu, S.-P.: The detection of multiple illicit street drugs in liquid samples by direct analysis in real time (DART) coupled to Q-orbitrap tandem mass spectrometry. Forensic Sci. Int. 267, 1–6 (2016)CrossRefPubMedGoogle Scholar
  70. 70.
    Valdez, C.A., Leif, R.N., Mayer, B.P.: An Efficient, Optimized Synthesis of Fentanyl and Related Analogs. PLOS ONE. 9, e108250 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Mayer, B.P., DeHope, A.J., Mew, D.A., Spackman, P.E., Williams, A.M.: Chemical Attribution of Fentanyl Using Multivariate Statistical Analysis of Orthogonal Mass Spectral Data. Anal. Chem. 88, 4303–4310 (2016)CrossRefPubMedGoogle Scholar
  72. 72.
    Hoffmann, W.D., Jackson, G.P.: Forensic Mass Spectrometry. Annu. Rev. Anal. Chem. 8, 419–440 (2015)CrossRefGoogle Scholar
  73. 73.
    Hildenbrand, Z.L., Mach, P.M., McBride, E.M., Dorreyatim, M.N., Taylor, J.T., Carlton, D.D., Meik, J.M., Fontenot, B.E., Wright, K.C., Schug, K.A., Verbeck, G.F.: Point source attribution of ambient contamination events near unconventional oil and gas development. Sci. Total Environ. 573, 382–388 (2016)CrossRefPubMedGoogle Scholar
  74. 74.
    Mach, P.M., Winfield, J.L., Aguilar, R.A., Wright, K.C., Verbeck, G.F.: A portable mass spectrometer study targeting anthropogenic contaminants in Sub-Antarctic Puerto Williams, Chile. Int. J. Mass Spectrom. 422, 148–153 (2017)CrossRefGoogle Scholar
  75. 75.
    Mach, P.M., McBride, E.M., Sasiene, Z.J., Brigance, K.R., Kennard, S.K., Wright, K.C., Verbeck, G.F.: Vehicle-Mounted Portable Mass Spectrometry System for the Covert Detection via Spatial Analysis of Clandestine Methamphetamine Laboratories. Anal. Chem. 87, 11501–11508 (2015)CrossRefPubMedGoogle Scholar
  76. 76.
    Giannoukos, S., Brkić, B., Taylor, S., Marshall, A., Verbeck, G.F.: Chemical Sniffing Instrumentation for Security Applications. Chem. Rev. 116, 8146–8172 (2016)CrossRefPubMedGoogle Scholar
  77. 77.
    Santos, L.S., Rosso, G.B., Pilli, R.A., Eberlin, M.N.: The Mechanism of the Stille Reaction Investigated by Electrospray Ionization Mass Spectrometry. J. Org. Chem. 72, 5809–5812 (2007)CrossRefPubMedGoogle Scholar
  78. 78.
    Amarante, G.W., Milagre, H.M.S., Vaz, B.G., Vilachã Ferreira, B.R., Eberlin, M.N., Coelho, F.: Dualistic Nature of the Mechanism of the Morita−Baylis−Hillman Reaction Probed by Electrospray Ionization Mass Spectrometry. J. Org. Chem. 74, 3031–3037 (2009)CrossRefPubMedGoogle Scholar
  79. 79.
    Silva, G.C.O., Correa, J.R., Rodrigues, M.O., Alvim, H.G.O., Guido, B.C., Gatto, C.C., Wanderley, K.A., Fioramonte, M., Gozzo, F.C., de Souza, R.O.M.A., Neto, B.A.D.: The Biginelli reaction under batch and continuous flow conditions: catalysis, mechanism and antitumoral activity. RSC Adv. 5, 48506–48515 (2015)CrossRefGoogle Scholar
  80. 80.
    Henderson, M.A., Luo, J., Oliver, A., McIndoe, J.S.: The Pauson-Khand Reaction: A Gas-Phase and Solution-Phase Examination Using Electrospray Ionization Mass Spectrometry. Organometallics. 30, 5471–5479 (2011)CrossRefGoogle Scholar
  81. 81.
    Fernandes, T.D.A., Gontijo Vaz, B., Eberlin, M.N., da Silva, A.J.M., Costa, P.R.R.: Palladium-Catalyzed Tandem Heck-Lactonization from o-Iodophenols and Enoates: Synthesis of Coumarins and the Study of the Mechanism by Electrospray Ionization Mass Spectrometry. J. Org. Chem. 75, 7085–7091 (2010)CrossRefGoogle Scholar
  82. 82.
    Silva, B.V., Violante, F.A., Pinto, A.C., Santos, L.S.: The mechanism of Sandmeyer's cyclization reaction by electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 25, 423–428 (2011)CrossRefPubMedGoogle Scholar
  83. 83.
    Cheng, C.-Y., Yuan, C.-H., Cheng, S.-C., Huang, M.-Z., Chang, H.-C., Cheng, T.-L., Yeh, C.-S., Shiea, J.: Electrospray-Assisted Laser Desorption/Ionization Mass Spectrometry for Continuously Monitoring the States of Ongoing Chemical Reactions in Organic or Aqueous Solution under Ambient Conditions. Anal. Chem. 80, 7699–7705 (2008)CrossRefPubMedGoogle Scholar
  84. 84.
    Bain, R.M., Ayrton, S.T., Cooks, R.G.: Fischer Indole Synthesis in the Gas Phase, the Solution Phase, and at the Electrospray Droplet Interface. J. Am. Soc. Mass Spectrom. 28, 1359–1364 (2017)CrossRefPubMedGoogle Scholar
  85. 85.
    Enami, S., Colussi, A.J.: Criegee Chemistry on Aqueous Organic Surfaces. J. Phys. Chem. Lett. 8, 1615–1623 (2017)CrossRefPubMedGoogle Scholar
  86. 86.
    Cravotto, G., Omiccioli, G., Stevanato, L.: An improved sonochemical reactor. Ultrason. Sonochem. 12, 213–217 (2005)CrossRefPubMedGoogle Scholar
  87. 87.
    Gogate, P.R., Sutkar, V.S., Pandit, A.B.: Sonochemical reactors: Important design and scale up considerations with a special emphasis on heterogeneous systems. Chem. Eng. J. 166, 1066–1082 (2011)CrossRefGoogle Scholar
  88. 88.
    Davidson, R.S., Patel, A.M., Safdar, A., Thornthwaite, D.: The application of ultrasound to the n-alkylation of amines using phase transfer catalysis. Tetrahedron Lett. 24, 5907–5910 (1983)CrossRefGoogle Scholar
  89. 89.
    Ju, Y., Varma, R.S.: Aqueous N-alkylation of amines using alkyl halides: direct generation of tertiary amines under microwave irradiation. Green Chem. 6, 219–221 (2004)CrossRefGoogle Scholar
  90. 90.
    Kuhnert, N.: Microwave-Assisted Reactions in Organic Synthesis—Are There Any Nonthermal Microwave Effects? Angew. Chem. Int. Ed. 41, 1863–1866 (2002)CrossRefGoogle Scholar
  91. 91.
    Eberlin, M.N.: Electrospray ionization mass spectrometry: a major tool to investigate reaction mechanisms in both solution and the gas phase. Eur. J. Mass Spectrom. (Chichester, Eng.). 13, 19–28 (2007)CrossRefGoogle Scholar
  92. 92.
    Santos, L.S.: Online Mechanistic Investigations of Catalyzed Reactions by Electrospray Ionization Mass Spectrometry: A Tool to Intercept Transient Species in Solution. Eur. J. Org. Chem. 2008, 235–253 (2008)CrossRefGoogle Scholar
  93. 93.
    Bain, R.M., Pulliam, C.J., Cooks, R.G.: Accelerated Hantzsch electrospray synthesis with temporal control of reaction intermediates. Chem. Sci. 6, 397–401 (2015)CrossRefPubMedGoogle Scholar
  94. 94.
    Loren, B.P., Wleklinski, M., Koswara, A., Yammine, K., Hu, Y., Nagy, Z.K., Thompson, D.H., Cooks, R.G.: Mass spectrometric directed system for the continuous-flow synthesis and purification of diphenhydramine. Chem. Sci. 8, 4363–4370 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Chen, H., Venter, A., Cooks, R.G.: Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem. Commun. 0, 2042–2044 (2006)Google Scholar
  96. 96.
    Xu, K., Lai, G., Zha, Z., Pan, S., Chen, H., Wang, Z.: A Highly anti-Selective Asymmetric Henry Reaction Catalyzed by a Chiral Copper Complex: Applications to the Syntheses of (+)-Spisulosine and a Pyrroloisoquinoline Derivative. Chem. Eur. J. 18, 12357–12362 (2012)CrossRefPubMedGoogle Scholar
  97. 97.
    Chen, H., Wortmann, A., Zhang, W., Zenobi, R.: Rapid in vivo fingerprinting of nonvolatile compounds in breath by extractive electrospray ionization quadrupole time-of-flight mass spectrometry. Angew. Chem. Int. Ed. 46, 580–583 (2007)CrossRefGoogle Scholar
  98. 98.
    Chen, H., Hu, B., Hu, Y., Huan, Y., Zhou, Z., Qiao, X.: Neutral desorption using a sealed enclosure to sample explosives on human skin for rapid detection by EESI-MS. J. Am. Soc. Mass Spectrom. 20, 719–722 (2009)CrossRefPubMedGoogle Scholar
  99. 99.
    Chen, H., Wortmann, A., Zenobi, R.: Neutral desorption sampling coupled to extractive electrospray ionization mass spectrometry for rapid differentiation of biosamples by metabolomic fingerprinting. J. Mass Spectrom. 42, 1123–1135 (2007)CrossRefPubMedGoogle Scholar
  100. 100.
    Gu, H., Chen, H., Pan, Z., Jackson, A.U., Talaty, N., Xi, B., Kissinger, C., Duda, C., Mann, D., Raftery, D., Cooks, R.G.: Monitoring Diet Effects via Biofluids and Their Implications for Metabolomics Studies. Anal. Chem. 79, 89–97 (2007)CrossRefPubMedGoogle Scholar
  101. 101.
    Zhu, L., Gamez, G., Chen, H.W., Huang, H.X., Chingin, K., Zenobi, R.: Real-time, on-line monitoring of organic chemical reactions using extractive electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 22, 2993–2998 (2008)CrossRefPubMedGoogle Scholar
  102. 102.
    Gu, H., Xu, N., Chen, H.: Direct analysis of biological samples using extractive electrospray ionization mass spectrometry (EESI-MS). Anal. Bioanal. Chem. 403, 2145–2153 (2012)CrossRefPubMedGoogle Scholar
  103. 103.
    Li, M., Jiang, J., Li, H., Xu, R.: The application and perspective of extractive electrospray ionization in the protein analysis. Shengwu Huaxue Yu Shengwu Wuli Jinzhan. 39, 194–198 (2012)Google Scholar
  104. 104.
    Zhang, X., Wang, N., Zhou, Y., Liu, Y., Zhang, J., Chen, H.: Extractive electrospray ionization mass spectrometry for direct characterization of cosmetic products. Anal. Methods. 5, 311–315 (2013)CrossRefGoogle Scholar
  105. 105.
    Biemann, K., Oro, J., Toulmin, P., Orgel, L.E., Nier, A.O., Anderson, D.M., Simmonds, P.G., Flory, D., Diaz, A.V., Rushneck, D.R., Biller, J.E., Lafleur, A.L.: The search for organic substances and inorganic volatile compounds in the surface of Mars. J. Geophys. Res. 82, 4641–4658 (1977)CrossRefGoogle Scholar
  106. 106.
    Ouyang, Z., Cooks, R.G.: Miniature mass spectrometers. Annu Rev Anal Chem (Palo Alto, Calif). 2, 187–214 (2009)CrossRefGoogle Scholar
  107. 107.
    Li, L., Chen, T.-C., Ren, Y., Hendricks, P.I., Cooks, R.G., Ouyang, Z.: Mini 12, Miniature Mass Spectrometer for Clinical and Other Applications—Introduction and Characterization. Anal. Chem. 86, 2909–2916 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Ecelberger, S.A., Cornish, T., Collins, B.F., Lewis, D.L., Bryden, W.: (2004)Google Scholar
  109. 109.
    Contreras, J.A., Murray, J.A., Tolley, S.E., Oliphant, J.L., Tolley, H.D., Lammert, S.A., Lee, E.D., Later, D.W., Lee, M.L.: Hand-Portable Gas Chromatograph-Toroidal Ion Trap Mass Spectrometer (GC-TMS) for Detection of Hazardous Compounds. J. Am. Soc. Mass Spectrom. 19, 1425–1434 (2008)CrossRefPubMedGoogle Scholar
  110. 110.
    Edwards, G.D., Shepson, P.B., Grossenbacher, J.W., Wells, J.M., Patterson, G.E., Barket, D.J., Pressley, S., Karl, T., Apel, E.: Development of an Automated Cylindrical Ion Trap Mass Spectrometer for the Determination of Atmospheric Volatile Organic Compounds. Anal. Chem. 79, 5040–5050 (2007)CrossRefPubMedGoogle Scholar
  111. 111.
    Misharin, A., Novoselov, K., Laiko, V., Doroshenko, V.M.: Development and Characterization of a Field-Deployable Ion-Trap Mass Spectrometer with an Atmospheric Pressure Interface. Anal. Chem. 84, 10105–10112 (2012)CrossRefPubMedGoogle Scholar
  112. 112.
    Brkić, B., Giannoukos, S., France, N., Murcott, R., Siviero, F., Taylor, S.: Optimized DLP linear ion trap for a portable non-scanning mass spectrometer. Int. J. Mass Spectrom. 369, 30–35 (2014)CrossRefGoogle Scholar
  113. 113.
    Li, A., Hansen, B.J., Powell, A.T., Hawkins, A.R., Austin, D.E.: Miniaturization of a planar-electrode linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 28, 1338–1344 (2014)CrossRefPubMedGoogle Scholar
  114. 114.
    Takats, Z., Wiseman, J.M., Gologan, B., Cooks, R.G.: Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 306, 471–473 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Hendricks, P.I., Dalgleish, J.K., Shelley, J.T., Kirleis, M.A., McNicholas, M.T., Li, L., Chen, T.C., Chen, C.H., Duncan, J.S., Boudreau, F., Noll, R.J., Denton, J.P., Roach, T.A., Ouyang, Z., Cooks, R.G.: Autonomous in situ analysis and real-time chemical detection using a backpack miniature mass spectrometer: concept, instrumentation development, and performance. Anal. Chem. 86, 2900–2908 (2014)CrossRefPubMedGoogle Scholar
  116. 116.
    Cody, R.B., Laramee, J.A., Durst, H.D.: Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77, 2297–2302 (2005)CrossRefPubMedGoogle Scholar
  117. 117.
    Chen, H., Zenobi, R.: Neutral desorption sampling of biological surfaces for rapid chemical characterization by extractive electrospray ionization mass spectrometry. Nat. Protoc. 3, 1467 (2008)CrossRefPubMedGoogle Scholar
  118. 118.
    Nemes, P., Vertes, A.: Laser Ablation Electrospray Ionization for Atmospheric Pressure, in Vivo, and Imaging Mass Spectrometry. Anal. Chem. 79, 8098–8106 (2007)CrossRefPubMedGoogle Scholar
  119. 119.
    Shiea, J., Huang, M.Z., Hsu, H.J., Lee, C.Y., Yuan, C.H., Beech, I., Sunner, J.: Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun. Mass Spectrom. 19, 3701–3704 (2005)CrossRefPubMedGoogle Scholar
  120. 120.
    Liu, J., Wang, H., Manicke, N.E., Lin, J.-M., Cooks, R.G., Ouyang, Z.: Development, Characterization, and Application of Paper Spray Ionization. Anal. Chem. 82, 2463–2471 (2010)CrossRefPubMedGoogle Scholar
  121. 121.
    Venter, A., Nefliu, M., Graham Cooks, R.: Ambient desorption ionization mass spectrometry. TrAC Trends Anal. Chem. 27, 284–290 (2008)CrossRefGoogle Scholar
  122. 122.
    Shrestha, A., Jin Oh, H., Kim, M.J., Pun, N.T., Magar, T.B.T., Bist, G., Choi, H., Park, P.-H., Lee, E.-S.: Design, synthesis, and structure-activity relationship study of halogen containing 2-benzylidene-1-indanone derivatives for inhibition of LPS-stimulated ROS production in RAW 264.7 macrophages. Eur. J. Med. Chem. 133, 121–138 (2017)CrossRefPubMedGoogle Scholar
  123. 123.
    Van Berkel, G.J., Ford, M.J., Deibel, M.A.: Thin-Layer Chromatography and Mass Spectrometry Coupled Using Desorption Electrospray Ionization. Anal. Chem. 77, 1207–1215 (2005)CrossRefPubMedGoogle Scholar
  124. 124.
    Wiseman, J.M., Ifa, D.R., Song, Q., Cooks, R.G.: Tissue Imaging at Atmospheric Pressure Using Desorption Electrospray Ionization (DESI) Mass Spectrometry. Angew. Chem. Int. Ed. 45, 7188–7192 (2006)CrossRefGoogle Scholar
  125. 125.
    Chen, C.-C., Lin, P.-C.: Monitoring of chemical transformations by mass spectrometry. Anal. Methods. 7, 6947–6959 (2015)CrossRefGoogle Scholar
  126. 126.
    Girod, M., Moyano, E., Campbell, D.I., Cooks, R.G.: Accelerated bimolecular reactions in microdroplets studied by desorption electrospray ionization mass spectrometry. Chem. Sci. 2, 501–510 (2011)CrossRefGoogle Scholar
  127. 127.
    Schröder, D.: Applications of Electrospray Ionization Mass Spectrometry in Mechanistic Studies and Catalysis Research. Acc. Chem. Res. 45, 1521–1532 (2012)CrossRefPubMedGoogle Scholar
  128. 128.
    Weston, D.J.: Ambient ionization mass spectrometry: current understanding of mechanistic theory; analytical performance and application areas. Analyst. 135, 661–668 (2010)CrossRefPubMedGoogle Scholar
  129. 129.
    Coelho, F., Eberlin, M.N.: The Bridge Connecting Gas-Phase and Solution Chemistries. Angew. Chem. Int. Ed. 50, 5261–5263 (2011)CrossRefGoogle Scholar
  130. 130.
    Espy, R.D., Wleklinski, M., Yan, X., Cooks, R.G.: Beyond the flask: Reactions on the fly in ambient mass spectrometry. TrAC Trends Anal. Chem. 57, 135–146 (2014)CrossRefGoogle Scholar
  131. 131.
    Iacobucci, C., Reale, S., De Angelis, F.: Elusive Reaction Intermediates in Solution Explored by ESI-MS: Reverse Periscope for Mechanistic Investigations. Angew. Chem. Int. Ed. Engl. 55, 2980–2993 (2016)CrossRefPubMedGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of North TexasDentonUSA
  2. 2.CHEM 195DentonUSA

Personalised recommendations