Rapid Quantification of 25-Hydroxyvitamin D3 in Human Serum by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

  • Yulin Qi
  • Miriam Müller
  • Caroline S. Stokes
  • Dietrich A. Volmer
Research Article


LC-MS/MS is widely utilized today for quantification of vitamin D in biological fluids. Mass spectrometric assays for vitamin D require very careful method optimization for precise and interference-free, accurate analyses however. Here, we explore chemical derivatization and matrix-assisted laser desorption/ionization (MALDI) as a rapid alternative for quantitative measurement of 25-hydroxyvitamin D3 in human serum, and compare it to results from LC-MS/MS. The method implemented an automated imaging step of each MALDI spot, to locate areas of high intensity, avoid sweet spot phenomena, and thus improve precision. There was no statistically significant difference in vitamin D quantification between the MALDI-MS/MS and LC-MS/MS: mean ± standard deviation for MALDI-MS—29.4 ± 10.3 ng/mL—versus LC-MS/MS—30.3 ± 11.2 ng/mL (P = 0.128)—for the sum of the 25-hydroxyvitamin D epimers. The MALDI-based assay avoided time-consuming chromatographic separation steps and was thus much faster than the LC-MS/MS assay. It also consumed less sample, required no organic solvents, and was readily automated. In this proof-of-concept study, MALDI-MS readily demonstrated its potential for mass spectrometric quantification of vitamin D compounds in biological fluids.

Graphical Abstract


Vitamin D Matrix-assisted laser desorption/ionization Signal-to-noise ratio Mass spectrometry Serum 


Funding Information

DAV acknowledges research support by the Alfried Krupp von Bohlen und Halbach-Stiftung and the German Science Foundation (DFG VO 1355/5-1). CSS is grateful to HOMFOR (T201000779) for financial support. This work uses data provided by patients and collected by clinical staff of Saarland University Medical Center as part of their care and support.

Compliance with Ethical Standards

All patients provided written informed consent and the study was approved by the local research ethics committee (Ärztekammer des Saarlandes, ref. 57/11).


  1. 1.
    Wolf, G.: The discovery of vitamin D: the contribution of Adolf Windaus. J. Nutr. 134, 1299–1302 (2004)CrossRefGoogle Scholar
  2. 2.
    Holick, M.F.: Vitamin D and sunlight: strategies for cancer prevention and other health benefits. Clin. J. Am. Soc. Nephrol. 3, 1548–1554 (2008)CrossRefGoogle Scholar
  3. 3.
    Gueli, N., Verrusio, W., Linguanti, A., Di Maio, F., Martinez, A., Marigliano, B., Cacciafesta, M.: Vitamin D: drug of the future. A new therapeutic approach. Arch. Gerontol. Geriatr. 54, 222–227 (2012)CrossRefGoogle Scholar
  4. 4.
    Costanzo, S., De Curtis, A., Di Castelnuovo, A., Persichillo, M., Bonaccio, M., Pounis, G., Cerletti, C., Donati, M.B., de Gaetano, G., Iacoviello, L.: Serum vitamin D deficiency and risk of hospitalization for heart failure: prospective results from the Moli-sani study. Nutr. Metab. Cardiovasc. Dis. 28, 298–307 (2018)CrossRefGoogle Scholar
  5. 5.
    Degerud, E., Nygård, O., de Vogel, S., Hoff, R., Svingen, G.F.T., Pedersen, E.R., Trygve Nilsen, D.W., Nordrehaug, J.E., Midttun, Ø., Ueland, P.M., Dierkes, J.: Plasma 25-hydroxyvitamin D and mortality in patients with suspected stable angina pectoris. J. Clin. Endocrinol. Metab. jc.2017-02328-jc.2017–02328 (2018)Google Scholar
  6. 6.
    Rafiq, S., Jeppesen, P.B.: Is hypovitaminosis D related to incidence of type 2 diabetes and high fasting glucose level in healthy subjects: a systematic review and meta-analysis of observational studies. Nutrients. 10, (2018)Google Scholar
  7. 7.
    Lerner, P.P., Sharony, L., Miodownik, C.: Association between mental disorders, cognitive disturbances and vitamin D serum level: current state. Clin. Nutr. ESPEN. 23, 89–102 (2018)CrossRefGoogle Scholar
  8. 8.
    Zerwekh, J.E.: Blood biomarkers of vitamin D status. Am. J. Clin. Nutr. 87, 1087S–1091S (2008)CrossRefGoogle Scholar
  9. 9.
    Glendenning, P., Inderjeeth, C.A.: Controversy and consensus regarding vitamin D: recent methodological changes and the risks and benefits of vitamin D supplementation. Crit. Rev. Clin. Lab. Sci. 53, 13–28 (2016)CrossRefGoogle Scholar
  10. 10.
    Heijboer, A.C., Blankenstein, M.A., Kema, I.P., Buijs, M.M.: Accuracy of 6 routine 25-hydroxyvitamin D assays: influence of vitamin D binding protein concentration. Clin. Chem. 58, 543–LP-548 (2012)CrossRefGoogle Scholar
  11. 11.
    Volmer, D.A., Mendes, L.R.B.C., Stokes, C.S.: Analysis of vitamin D metabolic markers by mass spectrometry: current techniques, limitations of the “gold standard” method, and anticipated future directions. Mass Spectrom. Rev. 34, 2–23 (2015)CrossRefGoogle Scholar
  12. 12.
    El-Khoury, J.M., Reineks, E.Z., Wang, S.: Progress of liquid chromatography-mass spectrometry in measurement of vitamin D metabolites and analogues. Clin. Biochem. 44, 66–76 (2011)CrossRefGoogle Scholar
  13. 13.
    Qi, Y., Geib, T., Schorr, P., Meier, F., Volmer, D.A.: On the isobaric space of 25-hydroxyvitamin D in human serum: potential for interferences in liquid chromatography/tandem mass spectrometry, systematic errors and accuracy issues. Rapid Commun. Mass Spectrom. 29, 1–9 (2015)CrossRefGoogle Scholar
  14. 14.
    Müller, M.J., Stokes, C.S., Volmer, D.A.: Quantification of the 3α and 3β epimers of 25-hydroxyvitamin D3 in dried blood spots by LC-MS/MS using artificial whole blood calibration and chemical derivatization. Talanta. 165, 398–404 (2017)CrossRefGoogle Scholar
  15. 15.
    Couchman, L., Benton, C.M., Moniz, C.F.: Variability in the analysis of 25-hydroxyvitamin D by liquid chromatography–tandem mass spectrometry: the devil is in the detail. Clin. Chim. Acta. 413, 1239–1243 (2012)CrossRefGoogle Scholar
  16. 16.
    van Kampen, J.J.A., Burgers, P.C., Gruters, R.A., Osterhaus, A.D.M.E., de Groot, R., Luider, T.M., Volmer, D.A.: Quantitative analysis of antiretroviral drugs in lysates of peripheral blood mononuclear cells using MALDI-triple quadrupole mass spectrometry. Anal. Chem. 80, 4969–4975 (2008)CrossRefGoogle Scholar
  17. 17.
    Volmer, D.A., Sleno, L., Bateman, K., Sturino, C., Oballa, R., Mauriala, T., Corr, J.: Comparison of MALDI to ESI on a triple Quadrupole platform for pharmacokinetic analyses. Anal. Chem. 79, 9000–9006 (2007)CrossRefGoogle Scholar
  18. 18.
    Qi, Y., Müller, M.J., Volmer, D.A.: Activation of reactive MALDI adduct ions enables differentiation of dihydroxylated vitamin D isomers. J. Am. Soc. Mass Spectrom. 28, 2532–2537 (2017)Google Scholar
  19. 19.
    Higashi, T., Shibayama, Y., Fuji, M., Shimada, K.: Liquid chromatography–tandem mass spectrometric method for the determination of salivary 25-hydroxyvitamin D3: a noninvasive tool for the assessment of vitamin D status. Anal. Bioanal. Chem. 391, 229–238 (2008)CrossRefGoogle Scholar
  20. 20.
    Hedman, C.J., Wiebe, D.A., Dey, S., Plath, J., Kemnitz, J.W., Ziegler, T.E.: Development of a sensitive LC/MS/MS method for vitamin D metabolites: 1,25 dihydroxyvitamin D2&3 measurement using a novel derivatization agent. J. Chromatogr. B. 953–954, 62–67 (2014)CrossRefGoogle Scholar
  21. 21.
    Stokes, C.S., Grünhage, F., Baus, C., Volmer, D.A., Wagenpfeil, S., Riemenschneider, M., Lammert, F.: Vitamin D supplementation reduces depressive symptoms in patients with chronic liver disease. Clin. Nutr. 35, 950–957 (2016)CrossRefGoogle Scholar
  22. 22.
    Müller, M.J., Stokes, C.S., Lammert, F., Volmer, D.A.: Chemotyping the distribution of vitamin D metabolites in human serum. Sci. Rep. 6, 21080 (2016)CrossRefGoogle Scholar
  23. 23.
    Vogeser, M., Kyriatsoulis, A., Huber, E., Kobold, U.: Candidate reference method for the quantification of circulating 25-hydroxyvitamin D<sub>3</sub> by liquid chromatography–tandem mass spectrometry. Clin. Chem. 50, 1415–LP-1417 (2004)CrossRefGoogle Scholar
  24. 24.
    Carter, G.D., Jones, J.C., Berry, J.L.: The anomalous behaviour of exogenous 25-hydroxyvitamin D in competitive binding assays. J. Steroid Biochem. Mol. Biol. 103, 480–482 (2007)CrossRefGoogle Scholar
  25. 25.
    Horst, R.L.: Exogenous versus endogenous recovery of 25-hydroxyvitamins D2 and D3 in human samples using high-performance liquid chromatography and the DiaSorin LIAISON Total-D Assay. J. Steroid Biochem. Mol. Biol. 121, 180–182 (2010)CrossRefGoogle Scholar
  26. 26.
    Qi, Y., O’Connor, P.B.: Data processing in Fourier transform ion cyclotron resonance mass spectrometry. Mass Spectrom. Rev. 33, 333–352 (2014)CrossRefGoogle Scholar
  27. 27.
    Liu, W., Xu, L., Lamberson, C., Haas, D., Korade, Z., Porter, N.A.: A highly sensitive method for analysis of 7-dehydrocholesterol for the study of Smith-Lemli-Opitz syndrome. J. Lipid Res. 55, 329–337 (2014)CrossRefGoogle Scholar
  28. 28.
    Chouinard, C.D., Cruzeiro, V.W.D., Beekman, C.R., Roitberg, A.E., Yost, R.A.: Investigating differences in gas-phase conformations of 25-hydroxyvitamin D3 sodiated epimers using ion mobility-mass spectrometry and theoretical modeling. J. Am. Soc. Mass Spectrom. 28, 1497–1505 (2017)CrossRefGoogle Scholar
  29. 29.
    Geib, T., Meier, F., Schorr, P., Lammert, F., Stokes, C.S., Volmer, D.A.: A simple micro-extraction plate assay for automated LC-MS/MS analysis of human serum 25-hydroxyvitamin D levels. J. Mass Spectrom. 50, 275–279 (2015)CrossRefGoogle Scholar
  30. 30.
    Hatsis, P., Brombacher, S., Corr, J., Kovarik, P., Volmer, D.A.: Quantitative analysis of small pharmaceutical drugs using a high repetition rate laser matrix-assisted laser/desorption ionization source. Rapid Commun. Mass Spectrom. 17, 2303–2309 (2003)CrossRefGoogle Scholar
  31. 31.
    Yazdanpanah, M., Bailey, D., Walsh, W., Wan, B., Adeli, K.: Analytical measurement of serum 25-OH-vitamin D3, 25-OH-vitamin D2 and their C3-epimers by LC–MS/MS in infant and pediatric specimens. Clin. Biochem. 46, 1264–1271 (2013)CrossRefGoogle Scholar
  32. 32.
    Kamao, M., Tatematsu, S., Hatakeyama, S., Sakaki, T., Sawada, N., Inouye, K., Ozono, K., Kubodera, N., Reddy, G.S., Okano, T.: C-3 epimerization of vitamin D3 metabolites and further metabolism of C-3 epimers: 25-hydroxyvitamin D3 is metabolized to 3-epi-25-hydroxyvitamin D3 and subsequently metabolized through C-1alpha or C-24 hydroxylation. J. Biol. Chem. 279, 15897–15907 (2004)CrossRefGoogle Scholar
  33. 33.
    Kamao, M., Tatematsu, S., Sawada, N., Sakaki, T., Hatakeyama, S., Kubodera, N., Okano, T.: Cell specificity and properties of the C-3 epimerization of vitamin D3 metabolites. J. Steroid Biochem. Mol. Biol. 89–90, 39–42 (2004)CrossRefGoogle Scholar
  34. 34.
    Burild, A., Frandsen, H.L., Jakobsen, J.: Simultaneous quantification of vitamin D3, 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in human serum by LC-MS/MS. Scand. J. Clin. Lab. Invest. 74, 418–423 (2014)CrossRefGoogle Scholar
  35. 35.
    van den Ouweland, J.M.W., Beijers, A.M., van Daal, H.: Fast separation of 25-hydroxyvitamin D3 from 3-epi-25-hydroxyvitamin D3 in human serum by liquid chromatography–tandem mass spectrometry: variable prevalence of 3-epi-25-hydroxyvitamin D3 in infants, children, and adults. Clin. Chem. 57, 1618–LP-1619 (2011)CrossRefGoogle Scholar
  36. 36.
    Keevil, B.: Does the presence of 3-epi-25OHD3 affect the routine measurement of vitamin D using liquid chromatography tandem mass spectrometry? Clin. Chem. Lab. Med. 50, 181–183 (2012)CrossRefGoogle Scholar
  37. 37.
    Goldman, M.M., Viec, K.V., Caulfield, M.P., Reitz, R.E., McPhaul, M.J., Clarke, N.J.: The measurement of 3-epimer 25-hydroxyvitamin D by mass spectrometry in clinical specimens detects inconsequential levels in adult subjects. J. Investig. Med. 62, 690–LP-695 (2014)CrossRefGoogle Scholar
  38. 38.
    Bailey, D., Veljkovic, K., Yazdanpanah, M., Adeli, K.: Analytical measurement and clinical relevance of vitamin D3 C3-epimer. Clin. Biochem. 46, 190–196 (2013)CrossRefGoogle Scholar
  39. 39.
    Lensmeyer, G., Poquette, M., Wiebe, D., Binkley, N.: The C-3 epimer of 25-hydroxyvitamin D3 is present in adult serum. J. Clin. Endocrinol. Metab. 97, 163–168 (2012)CrossRefGoogle Scholar
  40. 40.
    van den Ouweland, J.M., Beijers, A.M., van Daal, H., Elisen, M.G., Steen, G., Wielders, J.P.M.: C3-epimer cross-reactivity of automated 25-hydroxyvitamin D immunoassays. Ned Tijdschr Klin Chem Labgeneesk. 38, 136–138 (2013)Google Scholar
  41. 41.
    Evaluation of 3-epi-25-hydroxyvitamin D3 cross-reactivity in the Roche Elecsys Vitamin D Total protein binding assay. Clin. Chem. Lab. Med. 52, 373–380 (2014)Google Scholar
  42. 42.
    Carter, G.D.: Accuracy of 25-hydroxyvitamin D assays: confronting the issues. Curr. Drug Targets. 12, 19–28 (2011)CrossRefGoogle Scholar
  43. 43.
    Sleno, L., Volmer, D.A.: Some fundamental and technical aspects of the quantitative analysis of pharmaceutical drugs by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19, 1928–1936 (2005)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Yulin Qi
    • 1
  • Miriam Müller
    • 2
  • Caroline S. Stokes
    • 3
  • Dietrich A. Volmer
    • 1
  1. 1.Department of ChemistryHumboldt University of BerlinBerlinGermany
  2. 2.Saarland UniversitySaarbrückenGermany
  3. 3.Department of Medicine IISaarland University Medical CenterHomburgGermany

Personalised recommendations