Advertisement

Influence of Background H2O on the Collision-Induced Dissociation Products Generated from [UO2NO3]+

  • Michael J. Van Stipdonk
  • Anna Iacovino
  • Irena Tatosian
Research Article

Abstract

Developing a comprehensive understanding of the reactivity of uranium-containing species remains an important goal in areas ranging from the development of nuclear fuel processing methods to studies of the migration and fate of the element in the environment. Electrospray ionization (ESI) is an effective way to generate gas-phase complexes containing uranium for subsequent studies of intrinsic structure and reactivity. Recent experiments by our group have demonstrated that the relatively low levels of residual H2O in a 2-D, linear ion trap (LIT) make it possible to examine fragmentation pathways and reactions not observed in earlier studies conducted with 3-D ion traps (Van Stipdonk et al. J. Am. Soc. Mass Spectrom. 14, 1205–1214, 2003). In the present study, we revisited the dissociation of complexes composed of uranyl nitrate cation [UVIO2(NO3)]+ coordinated by alcohol ligands (methanol and ethanol) using the 2-D LIT. With relatively low levels of background H2O, collision-induced dissociation (CID) of [UVIO2(NO3)]+ primarily creates [UO2(O2)]+ by the ejection of NO. However, CID (using He as collision gas) of [UVIO2(NO3)]+ creates [UO2(H2O)]+ and UO2+ when the 2-D LIT is used with higher levels of background H2O. Based on the results presented here, we propose that product ion spectrum in the previous experiments was the result of a two-step process: initial formation of [UVIO2(O2)]+ followed by rapid exchange of O2 for H2O by ion-molecule reaction. Our experiments illustrate the impact of residual H2O in ion trap instruments on the product ions generated by CID and provide a more accurate description of the intrinsic dissociation pathway for [UVIO2(NO3)]+.

Graphical Abstract

Keywords

Electrospray ionization Uranyl Collision-induced dissociation Tandem mass spectrometry 

Notes

Funding Information

MVS received support for this work in the form of start-up funds from the Bayer School of Natural and Environmental Sciences and Duquesne University. Laboratory space renovation was made possible with support from the National Science Foundation through grant CHE-0963450. This work was also supported in part by the Robert Dean Loughney Faculty Development Endowment.

Supplementary material

13361_2018_1947_MOESM1_ESM.docx (53 kb)
ESM 1 (DOCX 53 kb)

References

  1. 1.
    Weigel, F.: In: Katz, J.J., Morss, L.R., Seaborg, G.T. (eds.) The Chemistry of the actinide elements, p. 169. Chapman and Hall, London (1986)CrossRefGoogle Scholar
  2. 2.
    Greenwood, N.N., Earnshaw, A.: Chemistry of the elements. Butterworth Heinemann, Oxford (1997)Google Scholar
  3. 3.
    Murphy, W.M., Shock, E.L.: Uranium: mineralogy, geochemistry and the environment. In: Burns, P.C., Finch, R. (eds.) , p. 221. Mineralogical Society of America, Washington, D. C. (1999)Google Scholar
  4. 4.
    Brookins, D.G.: Geochemical aspects of radioactive waste disposal. Springer-Verlag, New York (1984)CrossRefGoogle Scholar
  5. 5.
    Agnes, G.R., Horlick, G.: Electrospray mass spectrometry as a technique for elemental analysis: preliminary results. Appl. Spectrosc. 46, 401–406 (1992)CrossRefGoogle Scholar
  6. 6.
    Van Stipdonk, M.J., Chien, W., Anbalagan, V., Bulleigh, K., Hanna, D., Groenewold, G.: Gas-phase complexes containing the uranyl ion and acetone. J. Phys. Chem. A. 108, 10448–10457 (2004)CrossRefGoogle Scholar
  7. 7.
    Stipdonk, V., Chien, M.J., Bulleigh, W., Wu, K., Groenewold, Q., S, G.: Gas-phase uranyl-nitrile complex ions. J. Phys. Chem. A. 110, 959–970 (2006)CrossRefGoogle Scholar
  8. 8.
    Van Stipdonk, M., Gresham, G., Groenewold, G., Anbalagan, V., Hanna, D., Chien, W.: Elucidation of the collision-induced dissociation pathways of water and alcohol coordinated complexes containing the uranyl cation. J. Am. Soc. Mass Spectrom. 14, 1205–1214 (2003)CrossRefGoogle Scholar
  9. 9.
    Chien, W., Hanna, D., Anbalagan, V., Gresham, G., Groenewold, G., Zandler, M., Van Stipdonk, M.: Intrinsic hydration of uranyl-hydroxide, -nitrate and -acetate complexes. J. Am. Soc. Mass Spectrom. 15, 777–783 (2004)CrossRefGoogle Scholar
  10. 10.
    Groenewold, G.S., Van Stipdonk, M.J., Gresham, G.L., Chien, W., Bulleigh, K., Howard, A.: CID MS/MS of desferrioxamine siderophore complexes from ESI of UO2 2+, Fe3+ and Ca2+ solutions. J. Mass Spectrom. 39, 752–761 (2004)CrossRefGoogle Scholar
  11. 11.
    Van Stipdonk, M., Chien, W., Anbalagan, V., Gresham, G.L., Groenewold, G.S.: Oxidation of 2-propanol ligands during collision-induced dissociation of a gas-phase uranyl complex. Int. J. Mass Spectrom. 237, 175–183 (2004)CrossRefGoogle Scholar
  12. 12.
    Groenewold, G.S., Gianotto, A.K., Cossel, K.C., Van Stipdonk, M.J., Moore, D.T., Polfer, N., Oomens, J., de Jong, W.A., Visscher, L.: Vibrational spectroscopy of mass-selected [UO2(ligand)n]2+ complexes in the gas phase: comparison with theory. J. Am. Chem. Soc. 128, 4802–4813 (2006)CrossRefGoogle Scholar
  13. 13.
    Groenewold, G.S., Oomens, J., de Jong, W.A., Gresham, G.L., McIlwain, M.E., Van Stipdonk, M.J.: Vibrational spectroscopy of anionic nitrate complexes of UO2 2+ and Eu3+ isolated in the gas phase. Phys. Chem. Chem. Phys. 10, 1192–1202 (2008)CrossRefGoogle Scholar
  14. 14.
    Groenewold, G.S., Van Stipdonk, M.J., de Jong, W.A., Oomens, J., Gresham, G.L., McIlwain, M.E., Gao, D., Siboulet, B., Visscher, L., Kullman, M., Polfer, N.: Infrared spectroscopy of dioxouranium(V) complexes with solvent molecules: effect of reduction. ChemPhysChem. 9, 1278–1285 (2008)CrossRefGoogle Scholar
  15. 15.
    Groenewold, G.S., van Stipdonk, M.J., Oomens, J., de Jong, W.A., McIlwain, M.E.: The gas-phase bis-uranyl nitrate complex [(UO2)2(NO3)5]: infrared spectrum and structure. Int. J. Mass Spectrom. 308, 175–180 (2011)CrossRefGoogle Scholar
  16. 16.
    Tsierkezos, N.G., Roithova, J., Schroder, D., Oncak, M., Slavicek, P.: Can electrospray mass spectrometry quantitatively probe speciation? Hydrolysis of uranyl nitrate studied by gas-phase methods. Inorg. Chem. 48, 6287–6296 (2009)CrossRefGoogle Scholar
  17. 17.
    Pasilis, S.P., Pemberton, J.E.: Speciation and coordination chemistry of uranyl(VI)-citrate complexes in aqueous solution. Inorg. Chem. 42, 6793–6800 (2003)CrossRefGoogle Scholar
  18. 18.
    Pasilis, S., Somogyi, Á., Herrmann, K., Pemberton, J.E.: Ions generated from uranyl nitrate solutions by electrospray ionization (ESI) and detected with Fourier transform ion-cyclotron resonance (FT-ICR) mass spectrometry. J. Am. Soc. Mass Spectrom. 17, 230–240 (2006)CrossRefGoogle Scholar
  19. 19.
    Somogyi, A., Pasilis, S.P., Pemberton, J.E.: Electrospray ionization of uranyl-citrate complexes: adduct formation and ion-molecule reactions in a 3D ion trap and ion cyclotron resonance trapping instruments. Int. J. Mass Spectrom. 265, 281–294 (2007)CrossRefGoogle Scholar
  20. 20.
    Mustapha, A.J., Pasilis, S.P.: Probing uranyl(VI) speciation in the presence of amidoxime ligands using electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 27, 2135–2142 (2013)CrossRefGoogle Scholar
  21. 21.
    Mustapha, A.J., Pasilis, S.P.: Gas-phase complexes formed between amidoxime ligands and vanadium or iron investigated using electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 30, 1763–1770 (2016)CrossRefGoogle Scholar
  22. 22.
    Schoendorff, G., de Jong, W.A., Van Stipdonk, M.J., Gibson, J.K., Rios, D., Gordon, M.S., Windus, T.L.: On the formation of “hypercoordinated” uranyl complexes. Inorg. Chem. 50, 8490–8493 (2011)CrossRefGoogle Scholar
  23. 23.
    Rios, D., Schoendorff, G., Van Stipdonk, M.J., Gordon, M.S., Windus, T.L., Gibson, J.K., de Jong, W.A.: Roles of acetone and diacetone alcohol in coordination and dissociation reactions of uranyl complexes. Inorg. Chem. 51, 12768–12775 (2012)CrossRefGoogle Scholar
  24. 24.
    Gong, Y., de Jong, W.A., Gibson, J.K.: Gas-phase uranyl activation: formation of a uranium nitrosyl complex from uranyl azide. J. Am. Chem. Soc. 137, 5911–5915 (2015)CrossRefGoogle Scholar
  25. 25.
    Jaison, P.G., Kumar, P., Telmore, V.M., Aggarwai, S.K.: Electrospray ionization mass spectrometric studies on uranyl complex with α-hydroxyisobutyric acid in water-methanol solution. Rapid Commun. Mass Spectrom. 27, 1105–1118 (2013)CrossRefGoogle Scholar
  26. 26.
    Kumar, P., Jaison, P.G., Telmore, V.M., Alamelu, D., Aggarwai, S.K., Sadhu, B., Sundararajan, M.: J. Radioanal. Nucl. Chem. 308, 303–310 (2016)CrossRefGoogle Scholar
  27. 27.
    Kumar, P., Jaison, P.G., Telmore, V.M., Sadhu, B., Sundararajan, M.: Speciation of uranium-mandelic acid complexes using electrospray ionization mass spectrometry and density functional theory. Rapid Commun. Mass Spectrom. 31, 561–571 (2017)CrossRefGoogle Scholar
  28. 28.
    Cametti, M., Ilander, L., Rissanen, K.: Recognition of Li+ by a salophen-UO2 homodimeric complex. Inorg. Chem. 48, 8632–8637 (2009)CrossRefGoogle Scholar
  29. 29.
    Galindo, C., Del Nero, M.: Trace level uranyl complexation with phenylphosphonic acid in aqueous solution: direct speciation by high resolution mass spectrometry. Inorg. Chem. 52, 4372–4383 (2013)CrossRefGoogle Scholar
  30. 30.
    Crawford, C.L., Fugate, G.A., Cable-Dunlap, P.R., Wall, N.A., Siems, W.F., Hill Sr., H.H.: The novel analysis of uranyl compounds by electrospray-ion mobility-mass spectrometry. Int. J. Mass Spectrom. 333, 21–26 (2013)CrossRefGoogle Scholar
  31. 31.
    McGrail, B.T., Sigmon, G.E., Jouffret, L.J., Andrews, C.R., Burns, P.C.: Raman spectroscopic and ESI-MS characterization of uranyl peroxide cage clusters. Inorg. Chem. 53, 1562–1569 (2014)CrossRefGoogle Scholar
  32. 32.
    Xiao, C.-L., Wang, C.-Z., Mei, L., Zhange, Z.-R., Wall, N., Zhao, Y.-L., Chai, Z.-F., Shi, W.-Q.: Europium, uranyl and thorium-phenanthroline amide complexes in acetonitrile solution: and ESI-MS and DFT combined investigation. Dalton Trans. 44, 14376–14387 (2015)CrossRefGoogle Scholar
  33. 33.
    Qin, Z., Shi, S., Yang, C., Wen, J., Jia, J., Zhang, Z., Yu, H., Wang, X.: The coordination of amidoxime ligands with uranyl in the gas-phase: a mass spectrometry and DFT study. Dalton Trans. 45, 16413–16421 (2016)CrossRefGoogle Scholar
  34. 34.
    McDonald, L.W., Campbell, J.A., Vercouter, T., Clark, S.B.: Characterization of actinides complexes to nuclear fuel constituents using ESI-MS. Anal. Chem. 88, 2614–2621 (2016)CrossRefGoogle Scholar
  35. 35.
    Das, D., Kannan, S., Maity, D.K., Drew, M.G.B.: Steric effects on uranyl complexation: synthetic, structural, and theoretical studies of carbamoyl pyrazole compounds of the uranyl(VI) ion. Inorg. Chem. 51, 4869–4876 (2012)CrossRefGoogle Scholar
  36. 36.
    Dau, P.D., Su, J., Liu, H.-T., Huang, D.-L., Li, J., Wang, L.-S.: Photoelectron spectroscopy and the electronic structure of the uranyl tetrachloride dianion: UO2Cl4 2−. J. Chem. Phys. 137, 064315 (2012)CrossRefGoogle Scholar
  37. 37.
    Dau, P.D., Su, J., Liu, H.-T., Liu, J.-B., Huang, D.-L., Li, J., Wang, L.-S.: Observation and investigation of the uranyl tetrafluoride dianion (UO2F4 2−) and its solvation complexes with water and acetonitrile. Chem. Sci. 3, 1137–1146 (2012)CrossRefGoogle Scholar
  38. 38.
    Li, W.-L., Su, J., Jian, T., Lopez, G.V., Hu, H.-S., Cao, G.-J., Li, J., Wang, L.-S.: Strong electron correlation in UO2 : a photoelectron spectroscopy and relativistic quantum chemistry study. J. Chem. Phys. 140, 094306 (2014)CrossRefGoogle Scholar
  39. 39.
    Su, J., Dau, P.D., Qiu, Y.-H., Liu, H.-T., Xu, C.-F., Huang, D.-L., Wang, L.-S., Li, J.: Probing the electronic structure and chemical bonding in tricoordinate uranyl complexes UO2X3 (X = F, Cl, Br, I): competition between coulomb repulsion and U–X bonding. Inorg. Chem. 52, 6617–6626 (2013)CrossRefGoogle Scholar
  40. 40.
    Sokalaska, M., Prussakowska, M., Hoffmann, M., Gierczyk, B., Frański, R.: Unusial UO4 formed upon collision induced dissociation of [UO2(NO3)3], [UO2(ClO4)3], [UO2(CH3COO)3] ions. J. Am. Soc. Mass Spectrom. 21, 1789–1794 (2010)CrossRefGoogle Scholar
  41. 41.
    Luo, M., Hu, B., Zhang, X., Peng, D., Chen, H., Zhang, L., Huan, Y.: Extractive electrospray ionization mass spectrometry for sensitive detection of uranyl species in natural water samples. Anal. Chem. 82, 282–289 (2010)CrossRefGoogle Scholar
  42. 42.
    Rios, D., Michelini, M.C., Lucena, A.F., Marçalo, J., Gibson, J.K.: On the origins of faster oxo exchange for uranyl(V) versus plutonyl(V). J. Am. Chem. Soc. 134, 15488–15496 (2012)CrossRefGoogle Scholar
  43. 43.
    Rios, D., Rutkowski, P.X., Van Stipdonk, M.J., Gibson, J.K.: Gas-phase coordination complexes of dipositive plutonyl, PuO2 2+: chemical diversity across the actinyl series. Inorg. Chem. 50, 4781–4790 (2011)CrossRefGoogle Scholar
  44. 44.
    Rios, D., Rutkowski, P.X., Shuh, D.K., Bray, T.H., Gibson, J.K., Van Stipdonk, M.J.: Electron transfer dissociation of dipositive uranyl and plutonyl coordination complexes. J. Mass Spectrom. 46, 1247–1254 (2011)CrossRefGoogle Scholar
  45. 45.
    Rutkowski, P.X., Rios, D., Gibson, J.K., Van Stipdonk, M.J.: Gas-phase coordination complexes of UVIO2 2+, NpVIO2 2+, and PuVIO2 2+ with dimethylformamide. J. Am. Soc. Mass Spectrom. 22, 2042–2048 (2011)CrossRefGoogle Scholar
  46. 46.
    Rios, D., Michelini, M.C., Lucena, A.F., Marçalo, J., Bray, T., Gibson, J.K.: Gas-phase uranyl, neptunyl and plutonyl: hydration and oxidation studied by experiment and theory. Inorg. Chem. 51, 6603–6614 (2012)CrossRefGoogle Scholar
  47. 47.
    Gong, Y., Hu, H.-S., Rao, L., Li, J., Gibson, J.K.: Experimental and theoretical studies on the fragmentation of gas-phase uranyl, neptunyl and plutonyl-diglycolamide complexes. J. Phys. Chem. A. 117, 10544–10550 (2013)CrossRefGoogle Scholar
  48. 48.
    Gong, Y., Gibson, J.K.: Crown ether complexes of uranyl, neptunyl and plutonyl: hydration differentiates inclusion versus other coordination. Inorg. Chem. 11, 5839–5844 (2014)CrossRefGoogle Scholar
  49. 49.
    Dau, P.D., Rios, D., Gong, Y., Michelini, M.C., Marçalo, J., Shuh, D.K., Mogamman, M., Van Stipdonk, M.J., Corcovilos, T.A., Martens, J.K., Oomens, J., Redlich, B., Gibson, J.K.: Synthesis and hydrolysis of uranyl, neptunyl and plutonyl gas-phase complexes exhibiting discrete actinide-carbon bonds. Organometallics. 35, 1228–1240 (2016)CrossRefGoogle Scholar
  50. 50.
    de Jong, W.A., Dau, P., Wilson, R., Marçalo, J., Van Stipdonk, M.J., Corcovilos, T., Berden, G., Martens, J., Oomens, J., Gibson, J.K.: Revealing disparate chemistries of protactinium and uranium. Synthesis of the molecular uranium tetroxide anion, UO4. Inorg. Chem. 56, 3686–3694 (2017)CrossRefGoogle Scholar
  51. 51.
    Van Stipdonk, M.J., del Carmen Michelini, M., Plaviak, A., Martin, D., Gibson, J.K.: Formation of bare UO2 2+ and NUO+ by fragmentation of gas-phase uranyl-acetonitrile complexes. J. Phys. Chem. A. 118, 7838–7846 (2014)CrossRefGoogle Scholar
  52. 52.
    Van Stipdonk, M.J., O’Malley, C., Plaviak, A., Martin, D., Pestok, J., Mihm, P.A., Hanley, C.G., Corcovilos, T.A., Gibson, J.K., Bythell, B.J.: Dissociation of gas-phase, doubly-charged uranyl-acetone complexes by collisional activation and infrared photodissociation. Int. J. Mass Spectrom. 396, 22–34 (2016)CrossRefGoogle Scholar
  53. 53.
    Perez, E., Hanley, C., Koehler, S., Pestok, J., Polonsky, N., Van Stipdonk, M.: Gas phase reactions of ions derived from anionic uranyl formate and uranyl acetate complexes. J. Am. Soc. Mass Spectrom. 27, 1989–1998 (2016)CrossRefGoogle Scholar
  54. 54.
    Van Stipdonk, M.J., Hanley, C., Perez, E., Pestok, J., Mihm, P., Corcovilos, T.A.: Collision-induced dissociation of uranyl-methoxide and uranyl-ethoxide cations: formation of UO2H+ and uranyl-alkyl product ions. Rapid Commun. Mass Spectrom. 30, 1879–1890 (2016)CrossRefGoogle Scholar
  55. 55.
    Van Stipdonk, M., Bubas, A., Tatosian, I., Perez, E., Polonsky, N., Metzler, L., Somogyi, A.: Formation of [UVOF4] by collision-induced dissociation of a [UVIO2(O2)(O2C-CF3)2] precursor. Int. J. Mass Spectrom. 424, 58–64 (2018)CrossRefGoogle Scholar
  56. 56.
    Heinemann, C., Schwarz, H.: NUO+, a new species isoelectronic to the uranyl dication UO2 2+. Chem. Eur. J. 1, 7–11 (1995)CrossRefGoogle Scholar
  57. 57.
    McClellan, J.E., Murphy III, J.P., Mulholland, J.J., Yost, R.A.: Effects of fragile ions on mass resolution and on isolation for tandem mass spectrometry in the quadrupole ion trap mass spectrometer. Anal. Chem. 74, 402–412 (2002)CrossRefGoogle Scholar
  58. 58.
    Vachet, R.W., Hartmann, J.A.R., Callahan, J.H.: Ion-molecule reactions in a quadrupole ion trap as a probe of the gas-phase structure of metal complexes. J. Mass Spectrom. 33, 1209–1225 (1998)CrossRefGoogle Scholar
  59. 59.
    Ricks, A.M., Gagliardi, L., Duncan, M.A.: Uranium oxo and superoxo cations revealed using infrared spectroscopy in the gas phase. J. Phys. Chem. Lett. 2, 1662–1666 (2011)CrossRefGoogle Scholar
  60. 60.
    Groenewold, G.S., Cossel, K.C., Gresham, G.L., Gianotto, A.K., Appelhans, A.D., Olson, J.E., Van Stipdonk, M.J., Chien, W.: Binding of molecular O2 to Di- and tri-ligated [UO2]+. J. Am. Chem. Soc. 128, 3075–3084 (2006)CrossRefGoogle Scholar
  61. 61.
    Bryantsev, V.S., Cossel, K.C., Diallo, M.S., Goddard III, W.A., de Jong, W.A., Groenewold, G.S., Chien, W., Van Stipdonk, M.J.: 2-Electron 3-atom bond in side-on (η2) superoxo complexes: U(IV) and U(V) dioxo monocations. J. Phys. Chem. A. 112, 5777–5780 (2008)CrossRefGoogle Scholar
  62. 62.
    Leavitt, C.M., Bryantsev, V.S., de Jong, W.A., Diallo, M.S., Goddard III, W.A., Groenewold, G.S., Van Stipdonk, M.J.: Addition of H2O and O2 to acetone and dimethylsulfoxide ligated uranyl(V) dioxocations. J. Phys. Chem. A. 113, 2350–2358 (2009)CrossRefGoogle Scholar
  63. 63.
    Lucena, A.F., Carretas, J.M., Marçalo, J., Michelini, M.C., Gong, Y., Gibson, J.K.: Gas-phase reactions of molecular oxygen with uranyl(V) anionic complexes—synthesis and characterization of new superoxides of uranyl(VI). J. Phys. Chem. A. 119, 3628–3635 (2015)CrossRefGoogle Scholar
  64. 64.
    Frański, R.: Mass spectrometric decomposition of [MNO3]+ cations, where M=Ca, Sr, Ba. Polyhedron. 91, 136–140 (2015)CrossRefGoogle Scholar
  65. 65.
    Schröder, D., de Jong, K.P., Roithova, J.: Gas-phase model studies relevant to the decomposition of transition-metal nitrates M(NO3)2 (M=Co, Ni) into metal-oxo species. Eur. J. Inorg. Chem. 2009, 2121–2128 (2009)Google Scholar
  66. 66.
    Manuszak, M., Koppenol, W.H.: The enthalpy of isomerization of peroxynitrite to nitrate. Thermochim. Acta. 273, 11–15 (1996)CrossRefGoogle Scholar
  67. 67.
    Jursic, B.S., Klasinc, L., Pecur, S., Pryor, W.A.: On the mechanism of HOONO to HONO2 conversion. Nitric. Oxide Biol. Chem. 1, 494–501 (1997)CrossRefGoogle Scholar
  68. 68.
    Herold, S., Kalinga, S., Matsui, T., Watanabe, Y.: Mechanistic studies of the isomerization of peroxynitrite to nitrate catalyzed by distal histidine metmyoglobin mutants. J. Am. Chem. Soc. 126, 6945–6955 (2004)CrossRefGoogle Scholar
  69. 69.
    Contreras, R., Galván, M., Oliva, M., Safont, V., Andrés, J., Guerra, D., Aizman, A.: Two state reactivity mechanism for the rearrangement of hydrogen peroxynitrite to nitric acid. Chem. Phys. Lett. 457, 216–221 (2008)CrossRefGoogle Scholar
  70. 70.
    Ascenzi, P., Leboffe, L., Pesce, A., Ciaccio, C., Sbardella, D., Bolognesi, M., Coletta, M.: Nitrite-reductase and peroxynitrite isomerization activities of Methanosarcina acetivorans protoglobin. PLoS One. 9, e95391 (2014)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Michael J. Van Stipdonk
    • 1
  • Anna Iacovino
    • 1
  • Irena Tatosian
    • 1
  1. 1.Department of ChemistryDuquesne UniversityPittsburghUSA

Personalised recommendations