Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans

  • David J. HarveyEmail author
  • Yasunori Watanabe
  • Joel D. Allen
  • Pauline Rudd
  • Kevin Pagel
  • Max Crispin
  • Weston B. StruweEmail author
Focus: Mass Spectrometry in Glycobiology and Related Fields: Research Article


Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics.

Graphical Abstract


Ion mobility Complex N-glycans Collision cross section Glycomics 



W.S. and M.C. gratefully acknowledge a research grant from Against Breast Cancer (; UK Charity 1121258).


  1. 1.
    Clowers, B.H., Dwivedi, P., Steiner, W.E., Hill Jr., H.H., Bendiak, B.: Separation of sodiated isobaric disaccharides and trisaccharides using electrospray ionization-atmospheric pressure ion mobility-time of flight mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 660–669 (2005)CrossRefPubMedGoogle Scholar
  2. 2.
    Mookherjee, A., Guttman, M.: Bridging the structural gap of glycoproteomics with ion mobility spectrometry. Curr. Opin. Chem. Biol. 42, 86–92 (2017)CrossRefPubMedGoogle Scholar
  3. 3.
    Gray, C.J., Thomas, B., Upton, R., Migas, L.G., Eyers, C.E., Barran, P.E., Flitsch, S.L.: Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochim. Biophys. Acta. 1860, 1688–1709 (2016)CrossRefPubMedGoogle Scholar
  4. 4.
    Zhu, M., Bendiak, B., Clowers, B., Hill Jr., H.H.: Ion mobility-mass spectrometry analysis of isomeric carbohydrate precursor ions. Anal. Bioanal. Chem. 394, 1853–1867 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Huang, Y., Dodds, E.D.: Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius. Anal. Chem. 85, 9728–9735 (2013)CrossRefPubMedGoogle Scholar
  6. 6.
    Harvey, D.J., Crispin, M., Bonomelli, C., Scrivens, J.H.: Ion mobility mass spectrometry for ion recovery and clean-up of MS and MS/MS spectra obtained from low abundance viral samples. J. Am. Soc. Mass Spectrom. 26, 1754–1767 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Harvey, D.J., Sobott, F., Crispin, M., Wrobel, A., Bonomelli, C., Vasiljevic, S., Scanlan, C.N., Scarff, C.A., Thalassinos, K., Scrivens, J.H.: Ion mobility mass spectrometry for extracting spectra of N-glycans directly from incubation mixtures following glycan release: application to glycans from engineered glycoforms of intact, folded HIV gp120. J. Am. Soc. Mass Spectrom. 22, 568–581 (2011)CrossRefPubMedGoogle Scholar
  8. 8.
    Fenn, L.S., McLean, J.A.: Structural resolution of carbohydrate positional and structural isomers based on gas-phase ion mobility-mass spectrometry. Phys. Chem. Chem. Phys. 13, 2196–2205 (2011)CrossRefPubMedGoogle Scholar
  9. 9.
    Huang, Y., Dodds, E.D.: Ion-neutral collisional cross sections of carbohydrate isomers as divalent cation adducts and their electron transfer products. Analyst. 140, 6912–6921 (2015)CrossRefPubMedGoogle Scholar
  10. 10.
    Struwe, W.B., Baldauf, C., Hofmann, J., Rudd, P.M., Pagel, K.: Ion mobility separation of deprotonated oligosaccharide isomers—evidence for gas-phase charge migration. Chem Commun (Camb). 52, 12353–12356 (2016)CrossRefPubMedGoogle Scholar
  11. 11.
    Zhu, F., Glover, M.S., Shi, H., Trinidad, J.C., Clemmer, D.E.: Populations of metal-glycan structures influence MS fragmentation patterns. J. Am. Soc. Mass Spectrom. 26, 25–35 (2015)CrossRefPubMedGoogle Scholar
  12. 12.
    Hofmann, J., Hahm, H.S., Seeberger, P.H., Pagel, K.: Identification of carbohydrate anomers using ion mobility-mass spectrometry. Nature. 526, 241–244 (2015)CrossRefGoogle Scholar
  13. 13.
    Zheng, X., Zhang, X., Schocker, N.S., Renslow, R.S., Orton, D.J., Khamsi, J., Ashmus, R.A., Almeida, I.C., Tang, K., Costello, C.E., Smith, R.D., Michael, K., Baker, E.S.: Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses. Anal. Bioanal. Chem. 409, 467–476 (2017)CrossRefPubMedGoogle Scholar
  14. 14.
    Li, H., Giles, K., Bendiak, B., Kaplan, K., Siems, W.F., Hill Jr., H.H.: Resolving structural isomers of monosaccharide methyl glycosides using drift tube and traveling wave ion mobility mass spectrometry. Anal. Chem. 84, 3231–3239 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pu, Y., Ridgeway, M.E., Glaskin, R.S., Park, M.A., Costello, C.E., Lin, C.: Separation and identification of isomeric glycans by selected accumulation-trapped ion mobility spectrometry-electron activated dissociation tandem mass spectrometry. Anal. Chem. 88, 3440–3443 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Harvey, D.J., Abrahams, J.L.: Fragmentation and ion mobility properties of negative ions from N-linked carbohydrates: part 7. Reduced glycans. Rapid Commun Mass Spectrom. 30, 627–634 (2016)CrossRefPubMedGoogle Scholar
  17. 17.
    Hofmann, J., Struwe, W.B., Scarff, C.A., Scrivens, J.H., Harvey, D.J., Pagel, K.: Estimating collision cross sections of negatively charged N-glycans using traveling wave ion mobility-mass spectrometry. Anal. Chem. 86, 10789–10795 (2014)CrossRefPubMedGoogle Scholar
  18. 18.
    Guile, G.R., Rudd, P.M., Wing, D.R., Prime, S.B., Dwek, R.A.: A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal. Biochem. 240, 210–226 (1996)CrossRefPubMedGoogle Scholar
  19. 19.
    Harvey, D.J.: Fragmentation of negative ions from carbohydrates: part 3. Fragmentation of hybrid and complex N-linked glycans. J. Am. Soc. Mass Spectrom. 16, 647–659 (2005)CrossRefPubMedGoogle Scholar
  20. 20.
    Harvey, D.J.: Fragmentation of negative ions from carbohydrates: part 2. Fragmentation of high-mannose N-linked glycans. J. Am. Soc. Mass Spectrom. 16, 631–646 (2005)CrossRefPubMedGoogle Scholar
  21. 21.
    Harvey, D.J., Royle, L., Radcliffe, C.M., Rudd, P.M., Dwek, R.A.: Structural and quantitative analysis of N-linked glycans by matrix-assisted laser desorption ionization and negative ion nanospray mass spectrometry. Anal. Biochem. 376, 44–60 (2008)CrossRefPubMedGoogle Scholar
  22. 22.
    Gray, C.J., Schindler, B., Migas, L.G., Picmanova, M., Allouche, A.R., Green, A.P., Mandal, S., Motawia, M.S., Sanchez-Perez, R., Bjarnholt, N., Moller, B.L., Rijs, A.M., Barran, P.E., Compagnon, I., Eyers, C.E., Flitsch, S.L.: Bottom-up elucidation of glycosidic bond stereochemistry. Anal. Chem. 89, 4540–4549 (2017)CrossRefPubMedGoogle Scholar
  23. 23.
    Both, P., Green, A.P., Gray, C.J., Sardzik, R., Voglmeir, J., Fontana, C., Austeri, M., Rejzek, M., Richardson, D., Field, R.A., Widmalm, G., Flitsch, S.L., Eyers, C.E.: Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing. Nat. Chem. 6, 65–74 (2014)CrossRefPubMedGoogle Scholar
  24. 24.
    Guttman, M., Lee, K.K.: Site-specific mapping of sialic acid linkage isomers by ion mobility spectrometry. Anal. Chem. 88, 5212–5217 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Barroso, A., Gimenez, E., Konijnenberg, A., Sancho, J., Sanz-Nebot, V., Sobott, F.: Evaluation of ion mobility for the separation of glycoconjugate isomers due to different types of sialic acid linkage, at the intact glycoprotein, glycopeptide and glycan level. J. Proteome. 173, 22–31 (2018)CrossRefGoogle Scholar
  26. 26.
    Hofmann, J., Stuckmann, A., Crispin, M., Harvey, D.J., Pagel, K., Struwe, W.B.: Identification of lewis and blood group carbohydrate epitopes by ion mobility-tandem-mass spectrometry fingerprinting. Anal. Chem. 89, 2318–2325 (2017)CrossRefPubMedGoogle Scholar
  27. 27.
    Guile, G.R., Harvey, D.J., O'Donnell, N., Powell, A.K., Hunter, A.P., Zamze, S., Fernandes, D.L., Dwek, R.A., Wing, D.R.: Identification of highly fucosylated N-linked oligosaccharides from the human parotid gland. Eur. J. Biochem. 258, 623–656 (1998)CrossRefPubMedGoogle Scholar
  28. 28.
    Fournier, T., Medjoubi, N.N., Porquet, D.: Alpha-1-acid glycoprotein. Biochim. Biophys. Acta. 1482, 157–171 (2000)CrossRefPubMedGoogle Scholar
  29. 29.
    Hernández, H., Robinson, C.V.: Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat. Protoc. 2, 715–726 (2007)CrossRefPubMedGoogle Scholar
  30. 30.
    Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in fab-Ms Ms spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)CrossRefGoogle Scholar
  31. 31.
    Borovcova, L., Hermannova, M., Pauk, V., Simek, M., Havlicek, V., Lemr, K.: Simple area determination of strongly overlapping ion mobility peaks. Anal. Chim. Acta. 981, 71–79 (2017)CrossRefPubMedGoogle Scholar
  32. 32.
    Thalassinos, K., Grabenauer, M., Slade, S.E., Hilton, G.R., Bowers, M.T., Scrivens, J.H.: Characterization of phosphorylated peptides using traveling wave-based and drift cell ion mobility mass spectrometry. Anal. Chem. 81, 248–254 (2009)CrossRefPubMedGoogle Scholar
  33. 33.
    Struwe, W.B., Agravat, S., Aoki-Kinoshita, K.F., Campbell, M.P., Costello, C.E., Dell, A., Ten, F., Haslam, S.M., Karlsson, N.G., Khoo, K.H., Kolarich, D., Liu, Y., McBride, R., Novotny, M.V., Packer, N.H., Paulson, J.C., Rapp, E., Ranzinger, R., Rudd, P.M., Smith, D.F., Tiemeyer, M., Wells, L., York, W.S., Zaia, J., Kettner, C.: The minimum information required for a glycomics experiment (MIRAGE) project: sample preparation guidelines for reliable reporting of glycomics datasets. Glycobiology. 26, 907–910 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kolarich, D., Rapp, E., Struwe, W.B., Haslam, S.M., Zaia, J., McBride, R., Agravat, S., Campbell, M.P., Kato, M., Ranzinger, R., Kettner, C., York, W.S.: The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting mass-spectrometry-based glycoanalytic data. Mol. Cell. Proteomics. 12, 991–995 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Harvey, D.J., Scarff, C.A., Edgeworth, M., Pagel, K., Thalassinos, K., Struwe, W.B., Crispin, M., Scrivens, J.H.: Travelling-wave ion mobility mass spectrometry and negative ion fragmentation of hybrid and complex N-glycans. Journal of mass spectrometry : JMS. 51, 1064–1079 (2016)CrossRefPubMedGoogle Scholar
  36. 36.
    Harvey, D.J., Merry, A.H., Royle, L., Campbell, M.P., Dwek, R.A., Rudd, P.M.: Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics. 9, 3796–3801 (2009)CrossRefPubMedGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Target Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
  2. 2.Biological Sciences and the Institute for Life SciencesUniversity of SouthamptonSouthamptonUK
  3. 3.Oxford Glycobiology Institute, Department of BiochemistryUniversity of OxfordOxfordUK
  4. 4.Division of Structural BiologyUniversity of Oxford, Wellcome Centre for Human GeneticsOxfordUK
  5. 5.NIBRT GlycoScience GroupThe National Institute for Bioprocessing Research and TrainingDublinIreland
  6. 6.Fritz Haber Institute of the Max Planck SocietyBerlinGermany
  7. 7.Institut für Chemie und BiochemieFreien Universität BerlinBerlinGermany
  8. 8.Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUK

Personalised recommendations