Microdroplets Accelerate Ring Opening of Epoxides

  • Yin-Hung Lai
  • Shyam Sathyamoorthi
  • Ryan M. Bain
  • Richard N. Zare
Research Article


The nucleophilic opening of an epoxide is a classic organic reaction that has widespread utility in both academic and industrial applications. We have studied the reaction of limonene oxide with morpholine to form 1-methyl-2-morpholino-4-(prop-1-en-2-yl) cyclohexan-1-ol in bulk solution and in electrosprayed microdroplets with a 1:1 v/v water/methanol solvent system. We find that even after 90 min at room temperature, there is no product detected by nuclear magnetic resonance spectroscopy in bulk solution whereas in room-temperature microdroplets (2–3 μm in diameter), the yield is already 0.5% in a flight time of 1 ms as observed by mass spectrometry. This constitutes a rate acceleration of ~ 105 in the microdroplet environment, if we assume that as much as 5% of product is formed in bulk after 90 min of reaction time. We examine how the reaction rate depends on droplet size, solvent composition, sheath gas pressure, and applied voltage. These factors profoundly influence the extent of reaction. This dramatic acceleration is not limited to just one system. We have also found that the nucleophilic opening of cis-stilbene oxide by morpholine is similarly accelerated. Such large acceleration factors in reaction rates suggest the use of microdroplets for ring opening of epoxides in other systems, which may have practical significance if such a procedure could be scaled.

Graphical Abstract

This graphical image is distorted.  It is too extended in the vertical direction.  Please fix.ᅟ


Microdroplet Electrospray ionization Reaction acceleration Epoxide ring opening Microparticle imaging velocimetry 



We gratefully acknowledge the Air Force Office of Scientific Research through Basic Research Initiative grant (AFOSR FA9550-16-1-0113) for supporting this work.

Supplementary material

13361_2018_1908_MOESM1_ESM.docx (544 kb)
ESM 1 (DOCX 544 kb)


  1. 1.
    Wijtmans, R., Vink, M.K., Schoemaker, H.E., van Delft, F.L., Blaauw, R.H., Rutjes, F.P.: Biological relevance and synthesis of C-substituted morpholine derivatives. Synthesis. 5, 641–662 (2004)Google Scholar
  2. 2.
    Saddique, F.A., Zahoor, A.F., Faiz, S., Naqvi, S.A.R., Usman, M., Ahmad, M.: Recent trends in ring opening of epoxides by amines as nucleophiles. Synth. Commun. 46, 831–868 (2016)CrossRefGoogle Scholar
  3. 3.
    Goralski, C.T., Hasha, D.L., Singaram, B., Steiner, D.: Scale-up of the preparation of (1R,2R,4S)-1-methyl-4-(1-methylethenyl)-2-(4-morpholinyl)cyclohexanol. Org. Process. Res. Dev. 11, 776–779 (2007)CrossRefGoogle Scholar
  4. 4.
    Lee, J.K., Banerjee, S., Nam, H.G., Zare, R.N.: Acceleration of reaction in charged microdroplets. Q. Rev. Biophys. 48, 437–444 (2015)CrossRefGoogle Scholar
  5. 5.
    Li, Y., Yan, X., Cooks, R.G.: The role of the Interface in thin film and droplet accelerated reactions studied by competitive substituent effects. Angew. Chem. Int. Edit. 55, 3433–3437 (2016)CrossRefGoogle Scholar
  6. 6.
    Yan, X., Bain, R.M., Cooks, R.G.: Organic reactions in microdroplets: reaction acceleration revealed by mass spectrometry. Angew. Chem. Int. Edit. 55, 12960–12972 (2016)CrossRefGoogle Scholar
  7. 7.
    Augusti, R., Chen, H., Eberlin, L.S., Nefliu, M., Cooks, R.G.: Atmospheric pressure Eberlin transacetalization reactions in the heterogeneous liquid/gas phase. Int. J. Mass Spectrom. 253, 281–287 (2006)CrossRefGoogle Scholar
  8. 8.
    Bain, R.M., Pulliam, C.J., Ayrton, S.T., Bain, K., Cooks, R.G.: Accelerated hydrazone formation in charged microdroplets. Rapid Commun. Mass Spectrom. 30, 1875–1878 (2016)CrossRefGoogle Scholar
  9. 9.
    Bain, R.M., Pulliam, C.J., Cooks, R.G.: Accelerated Hantzsch electrospray synthesis with temporal control of reaction intermediates. Chem. Sci. 6, 397–401 (2015)CrossRefGoogle Scholar
  10. 10.
    Banerjee, S., Zare, R.N.: Syntheses of isoquinoline and substituted quinolines in charged microdroplets. Angew. Chem. Int. Edit. 54, 14795–14799 (2015)CrossRefGoogle Scholar
  11. 11.
    Girod, M., Moyano, E., Campbell, D.I., Cooks, R.G.: Accelerated bimolecular reactions in microdroplets studied by desorption electrospray ionization mass spectrometry. Chem. Sci. 2, 501–510 (2011)CrossRefGoogle Scholar
  12. 12.
    Jansson, E.T., Lai, Y.-H., Santiago, J.G., Zare, R.N.: Rapid hydrogen–deuterium exchange in liquid droplets. J. Am. Chem. Soc. 139, 6851–6854 (2017)CrossRefGoogle Scholar
  13. 13.
    Mortensen, D.N., Williams, E.R.: Ultrafast (1 μs) mixing and fast protein folding in nanodrops monitored by mass spectrometry. J. Am. Chem. Soc. 138, 3453–3460 (2016)CrossRefGoogle Scholar
  14. 14.
    Mortensen, D.N., Williams, E.R.: Investigating protein folding and unfolding in electrospray nanodrops upon rapid mixing using theta-glass emitters. Anal. Chem. 87, 1281–1287 (2015)CrossRefGoogle Scholar
  15. 15.
    Bain, R.M., Sathyamoorthi, S., Zare, R.N.: “On-droplet” chemistry: the cycloaddition of diethyl azodicarboxylate and quadricyclane. Angew. Chem. Int. Edit. 56, 15083–15087 (2017)CrossRefGoogle Scholar
  16. 16.
    Jacobs, M.I., Davies, J.F., Lee, L., Davis, R.D., Houle, F.A., Wilson, K.R.: Exploring chemistry in micro-compartments using guided droplet collisions in a branched quadrupole trap coupled to a single droplet, paper spray mass spectrometer. Anal. Chem. 89, 12511–12519 (2017)CrossRefGoogle Scholar
  17. 17.
    Lee, J.K., Kim, S., Nam, H.G., Zare, R.N.: Microdroplet fusion mass spectrometry for fast reaction kinetics. Proc. Natl. Acad. Sci. U. S. A. 112, 3898–3903 (2015)CrossRefGoogle Scholar
  18. 18.
    Aragonès, A.C., Haworth, N.L., Darwish, N., Ciampi, S., Bloomfield, N.J., Wallace, G.G., et al.: Electrostatic catalysis of a Diels–Alder reaction. Nature. 531, 88–91 (2016)CrossRefGoogle Scholar
  19. 19.
    Oancea, D., Raducan, A.: Solvent effect on ion-molecule reactions: from solution to gas phase kinetics. Rev. Roum. Chim. 42, 849–854 (1997)Google Scholar
  20. 20.
    Kebarle, P., Dillow, G.W., Hirao, K., Chowdhury, S.: Solvation energies of ions and ionic transition states from studies of gas-phase ion–molecule reactions and equilibria. Faraday Discuss. 85, 23–35 (1988)CrossRefGoogle Scholar
  21. 21.
    Hagberg, D., Brdarski, S., Karlström, G.: On the solvation of ions in small water droplets. J. Phys. Chem. B. 109, 4111–4117 (2005)CrossRefGoogle Scholar
  22. 22.
    Vaitheeswaran, S., Thirumalai, D.: Hydrophobic and ionic interactions in nanosized water droplets. J. Am. Chem. Soc. 128, 13490–13496 (2006)CrossRefGoogle Scholar
  23. 23.
    Badu-Tawiah, A.K., Campbell, D.I., Cooks, R.G.: Accelerated C–N bond formation in dropcast thin films on ambient surfaces. J. Am. Soc. Mass Spectrom. 23, 1461–1468 (2012)CrossRefGoogle Scholar
  24. 24.
    Wei, Z., Wleklinski, M., Ferreira, C., Cooks, R.G.: Reaction acceleration in thin films with continuous product deposition for organic synthesis. Angew. Chem. Int. Edit. 56, 9386–9390 (2017)CrossRefGoogle Scholar
  25. 25.
    Müller, T., Badu-Tawiah, A., Cooks, R.G.: Accelerated carbon-carbon bond-forming reactions in preparative electrospray. Angew. Chem. Int. Edit. 51, 11832–11835 (2012)CrossRefGoogle Scholar
  26. 26.
    Takáts, Z., Wiseman, J.M., Gologan, B., Cooks, R.G.: Electrosonic spray ionization. A gentle technique for generating folded proteins and protein complexes in the gas phase and for studying ion−molecule reactions at atmospheric pressure. Anal. Chem. 76, 4050–4058 (2004)CrossRefGoogle Scholar
  27. 27.
    Claridge, T.D.: High-Resolution NMR Techniques in Organic Chemistry, 3rd edn. Elsevier, Oxford (2016)Google Scholar
  28. 28.
    Pritchard, J.G., Siddiqui, I.A.: Studies on the reaction of aromatic bases with epoxides, and anucleophilic buffer for the acid-catalysed hydrolysis of epoxides. J. Chem. Soc. Perkin Trans. 2, 1309–1312 (1972)CrossRefGoogle Scholar
  29. 29.
    Taylor, G.: Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A Math. Phys. Sci. 280, 383–397 (1964)CrossRefGoogle Scholar
  30. 30.
    Wilm, M.S., Mann, M.: Electrospray and Taylor-cone theory, Dole’s beam of macromolecules at last. Int. J. Mass Spectrom. 136, 167–180 (1994)CrossRefGoogle Scholar
  31. 31.
    Zhou, S., Edwards, A.G., Cook, K.D., Van Berkel, G.J.: Investigation of the electrospray plume by laser-induced fluorescence spectroscopy. Anal. Chem. 71, 769–776 (1999)CrossRefGoogle Scholar
  32. 32.
    Marginean, I., Parvin, L., Heffernan, L., Vertes, A.: Flexing the electrified meniscus: the birth of a jet in electrosprays. Anal. Chem. 76, 4202–4207 (2004)CrossRefGoogle Scholar
  33. 33.
    Duft, D., Achtzehn, T., Muller, R., Huber, B.A., Leisner, T.: Coulomb fission: Rayleigh jets from levitated microdroplets. Nature. 421, 128–128 (2003)CrossRefGoogle Scholar
  34. 34.
    Fallah-Araghi, A., Meguellati, K., Baret, J.C., El Harrak, A., Mangeat, T., Karplus, M., et al.: Enhanced chemical synthesis at soft interfaces: a universal reaction-adsorption mechanism in microcompartments. Phys. Rev. Lett. 112, 5 (2014)CrossRefGoogle Scholar
  35. 35.
    Hirabayashi, A., Sakairi, M., Koizumi, H.: Sonic spray ionization method for atmospheric pressure ionization mass spectrometry. Anal. Chem. 66, 4557–4559 (1994)CrossRefGoogle Scholar
  36. 36.
    Haddad, R., Sparrapan, R., Eberlin, M.N.: Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry. Rapid Commun. Mass Spectrom. 20, 2901–2905 (2006)CrossRefGoogle Scholar
  37. 37.
    Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization-principles and practice. Mass Spectrom. Rev. 9, 37–70 (1990)CrossRefGoogle Scholar
  38. 38.
    Li, Y., Cole, R.B.: Shifts in peptide and protein charge state distributions with varying spray tip orifice diameter in nanoelectrospray Fourier transform ion cycitron resonance mass spectrometry. Anal. Chem. 75, 5739–5746 (2003)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Yin-Hung Lai
    • 1
  • Shyam Sathyamoorthi
    • 1
  • Ryan M. Bain
    • 1
  • Richard N. Zare
    • 1
  1. 1.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations