Detection of Amyloid Beta (Aβ) Oligomeric Composition Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS)

  • Jasmine S.-H. Wang
  • Shawn N. Whitehead
  • Ken K.-C. Yeung
Research Article


The use of MALDI MS as a fast and direct method to detect the Aβ oligomers of different masses is examined in this paper. Experimental results suggest that Aβ oligomers are ionized and detected as singly charged ions, and thus, the resulting mass spectrum directly reports the oligomer size distribution. Validation experiments were performed to verify the MS data against artifacts. Mass spectra collected from modified Aβ peptides with different propensities for aggregation were compared. Generally, the relative intensities of multimers were higher from samples where oligomerization was expected to be more favorable, and vice versa. MALDI MS was also able to detect the differences in oligomeric composition before and after the incubation/oligomerization step. Such differences in sample composition were also independently confirmed with an in vitro Aβ toxicity study on primary rat cortical neurons. An additional validation was accomplished through removal of oligomers from the sample using molecular weight cutoff filters; the resulting MS data correctly reflected the removal at the expected cutoff points. The results collectively validated the ability of MALDI MS to assess the monomeric/multimeric composition of Aβ samples.

Graphical Abstract


Alzheimer’s disease Amyloid beta-derived diffusible ligand (ADDL) Oligomers Non-covalent complexes Protein aggregation In vitro toxicity assay Embryonic rat cortical neurons 



Alzheimer’s disease


atomic force microscopy

amyloid beta


dimethyl sulfoxide


electrospray ionization


Ham’s F12 media


ion mobility spectrometry


matrix-assisted laser desorption/ionization


mass spectrometry


molecular weight cutoff


ammonium hydroxide


sinapinic acid


surface plasmon resonance


trifluoroacetic acid


time of flight





The authors thank Mrs. Lynn Wang for her help with cell culture preparations. The authors also acknowledge Mrs. Kristina Jurcic, the University of Western Ontario MALDI MS Facility, and the Schulich School of Medicine and Dentistry for their support.

Author’s Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding Sources

This work was funded by the University of Western Ontario, Natural Sciences and Engineering Research Council of Canada, Canadian Institutes for Health Research, Lawson Health and Research Institutes, and the Canada Foundation for Innovation.


  1. 1.
    Murphy, M.P., LeVine, H.: Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis. 19(1), 311–323 (2010)CrossRefGoogle Scholar
  2. 2.
    Sakono, M., Zako, T.: Amyloid oligomers: formation and toxicity of Abeta oligomers. FEBS J. 277(6), 1348–1358 (2010)CrossRefGoogle Scholar
  3. 3.
    Hebert, L.E., Weuve, J., Scherr, P.A., Evans, D.A.: Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology. 80(19), 1778–1783 (2013)CrossRefGoogle Scholar
  4. 4.
    Murphy, S.L., Xu, J., Kochanek, K.D.: Deaths: final data for 2010. Natl. Vital Stat. Rep. 61(4), 1–117 (2013)Google Scholar
  5. 5.
    Laurén, J., Gimbel, D.A., Nygaard, H.B., Gilbert, J.W., Strittmatter, S.M.: Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature. 457(7233), 1128–1132 (2009)CrossRefGoogle Scholar
  6. 6.
    Wilcox, K.C., Lacor, P.N., Pitt, J., Klein, W.L.: Abeta oligomer-induced synapse degeneration in Alzheimer’s disease. Cell. Mol. Neurobiol. 31(6), 939–948 (2011)CrossRefGoogle Scholar
  7. 7.
    Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D'Ursi, A.M., Temussi, P.A., Picone, D.: Solution structure of the Alzheimer amyloid beta-peptide (1-42) in an apolar microenvironment—similarity with a virus fusion domain. Eur. J. Biochem. 269(22), 5642–5648 (2002)CrossRefGoogle Scholar
  8. 8.
    Gong, Y., Chang, L., Viola, K.L., Lacor, P.N., Lambert, M.P., Finch, C.E., Krafft, G.A., Klein, W.L.: Alzheimer’s disease-affected brain: presence of oligomeric Abeta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl. Acad. Sci. 100(18), 10417–10422 (2002)CrossRefGoogle Scholar
  9. 9.
    Harman, D.: Alzheimer’s disease: a hypothesis on pathogenesis. J. Am. Aging Assoc. 23(3), 147–161 (2000)Google Scholar
  10. 10.
    Klein, W.L., Krafft, G.A., Finch, C.E.: Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci. 24(4), 219–224 (2001)CrossRefGoogle Scholar
  11. 11.
    Viola, K.L., Klein, W.L.: Amyloid beta oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol. 129, 183–206 (2015)CrossRefGoogle Scholar
  12. 12.
    Kotilinek, L.A., Bacskai, B., Westerman, M., Kawarabayashi, T., Younkin, L., Hyman, B.T., Younkin, S., Ashe, K.H.: Reversible memory loss in a mouse transgenic model of Alzheimer’s disease. J. Neurosci. 22(15), 6331–6335 (2002)Google Scholar
  13. 13.
    Giordano, C.R.; Terlecky, L.J.; Bollig-Fischer, A.; Walton, P.A.; Terlecky, S.R.: Amyloid-beta neuroprotection mediated by a targeted antioxidant. Sci. Rep. 4, 4983 (2014).
  14. 14.
    Walsh, D.M., Klyubin, I., Fadeeva, J.V., Cullen, W.K., Anwyl, R., Wolfe, M.S., Rowan, M.J., Selkoe, D.J.: Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 416(6880), 535–539 (2002)CrossRefGoogle Scholar
  15. 15.
    Ferreira, S.T., Klein, W.L.: The Abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol. Learn. Mem. 96(4), 529–543 (2011)CrossRefGoogle Scholar
  16. 16.
    Hung, L.W., Ciccotosto, G.D., Giannakis, E., Tew, D.J., Perez, K., Masters, C.L., Cappai, R., Wade, J.D., Barnham, K.J.: Amyloid-beta peptide (Abeta) neurotoxicity is modulated by the rate of peptide aggregation: Abeta dimers and trimers correlate with neurotoxicity. J. Neurosci. 28(46), 11950–11958 (2008)CrossRefGoogle Scholar
  17. 17.
    Dahlgren, K.N., Manelli, A.M., Stine Jr., W.B., Baker, L.K., Krafft, G.A., LaDu, M.J.: Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J. Biol. Chem. 277(35), 32046–32053 (2002)CrossRefGoogle Scholar
  18. 18.
    Stroud, J.C., Liu, C., Teng, P.K., Eisenberg, D.: Toxic fibrillar oligomers of amyloid-beta have cross-beta structure. Proc. Natl. Acad. Sci. U. S. A. 109(20), 7717–7722 (2012)CrossRefGoogle Scholar
  19. 19.
    Hardy, J., Selkoe, D.J.: Medicine—the amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 297(5580), 353–356 (2002)CrossRefGoogle Scholar
  20. 20.
    Trimpin, S., Deinzer, M.L.: Solvent-free MALDI-MS for the analysis of beta-amyloid peptides via the mini-ball mill approach: qualitative and quantitative advances. J. Am. Soc. Mass Spectrom. 18(8), 1533–1543 (2007)CrossRefGoogle Scholar
  21. 21.
    Ebenezer, P.J., Weidner, A.M., LeVine 3rd, H., Markesbery, W.R., Murphy, M.P., Zhang, L., Dasuri, K., Fernandez-Kim, S.O., Bruce-Keller, A.J., Gavilán, E., Keller, J.N.: Neuron specific toxicity of oligomeric amyloid-beta: role for JUN-kinase and oxidative stress. J. Alzheimers Dis. 22(3), 839–848 (2010)CrossRefGoogle Scholar
  22. 22.
    Ai, Z.B., Li, C.Y., Li, L.T., He, G.: Resveratrol inhibits beta-amyloid-induced neuronal apoptosis via regulation of p53 acetylation in PC12 cells. Mol. Med. Rep. 11(4), 2429–2434 (2015)CrossRefGoogle Scholar
  23. 23.
    Li, J., Ding, X., Zhang, R., Jiang, W., Sun, X., Xia, Z., Wang, X., Wu, E., Zhang, Y., Hu, Y.: Harpagoside ameliorates the amyloid-beta-induced cognitive impairment in rats via up-regulating BDNF expression and MAPK/PI3K pathways. Neuroscience. 303, 103–114 (2015)CrossRefGoogle Scholar
  24. 24.
    Cižas, P., Jekabsonė, A., Borutaitė, V., Morkūnienė, R.: Prevention of amyloid-Beta oligomer-induced neuronal death by EGTA, estradiol, and endocytosis inhibitor. Medicina-Lithuania. 47(2), 107–112 (2011)Google Scholar
  25. 25.
    Kelley, A.R., Perry, G., Castellani, R.J., Bach, S.B.H.: Laser-induced in-source decay applied to the determination of amyloid-beta in Alzheimer’s brains. ACS Chem. Neurosci. 7(3), 261–268 (2016)CrossRefGoogle Scholar
  26. 26.
    Jan, A., Hartley, D.M., Lashuel, H.A.: Preparation and characterization of toxic Abeta aggregates for structural and functional studies in Alzheimer’s disease research. Nat. Protoc. 5(6), 1186–1209 (2010)CrossRefGoogle Scholar
  27. 27.
    Ryan, T.M., Caine, J., Mertens, H.D., Kirby, N., Nigro, J., Breheney, K., Waddington, L.J., Streltsov, V.A., Curtain, C., Masters, C.L., Roberts, B.R.: Ammonium hydroxide treatment of Abeta produces an aggregate free solution suitable for biophysical and cell culture characterization. PeerJ. 1, e73 (2013)CrossRefGoogle Scholar
  28. 28.
    Teplow, D.B.: Preparation of amyloid beta-protein for structural and functional studies. Amyloid, Prions, and Other Protein Aggregates, Pt C. Methods Enzymol. 413, 20–33 (2006)CrossRefGoogle Scholar
  29. 29.
    Broersen, K., Jonckheere, W., Rozenski, J., Vandersteen, A., Vandersteen, A., Pauwels, K., Pastore, A., Rousseau, F., Schymkowitz, J.: A standardized and biocompatible preparation of aggregate-free amyloid beta peptide for biophysical and biological studies of Alzheimer’s disease. Protein Eng. Des. Sel. 24(9), 743–750 (2011)CrossRefGoogle Scholar
  30. 30.
    Bitan, G., Fradinger, E.A., Spring, S.M., Teplow, D.B.: Neurotoxic protein oligomers—what you see is not always what you get. Amyloid-J. Protein Fold. Disord. 12(2), 88–95 (2005)CrossRefGoogle Scholar
  31. 31.
    Pryor, N.E., Moss, M.A., Hestekin, C.N.: Unraveling the early events of amyloid-beta protein (Abeta) aggregation: techniques for the determination of Abeta aggregate size. Int. J. Mol. Sci. 13(3), 3038–3072 (2012)CrossRefGoogle Scholar
  32. 32.
    Bitan, G., Lomakin, A., Teplow, D.B.: Amyloid beta protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J. Biol. Chem. 276(37), 35176–35184 (2001)CrossRefGoogle Scholar
  33. 33.
    Amaro, M., Kubiak-Ossowska, K., Birch, D.J., Rolinski, O.J.: Initial stages of beta-amyloid Aβ(1-40) and Aβ(1-42) oligomerization observed using fluorescence decay and molecular dynamics analysis of tyrosine. Methods Appl. Fluoresc. 1(1), 1–13 (2013)CrossRefGoogle Scholar
  34. 34.
    Lindberg, D.J., Wranne, M.S., Gatty, M.G., Westerlund, F., Esbjörner, E.K.: Steady-state and time-resolved Thioflavin-T fluorescence can report on morphological differences in amyloid fibrils formed by Abeta(1-40) and Abeta(1-42). Biochem. Biophys. Res. Commun. 458(2), 418–423 (2015)CrossRefGoogle Scholar
  35. 35.
    Moore, B.D., Rangachari, V., Tay, W.M., Milkovic, N.M., Rosenberry, T.L.: Biophysical analyses of synthetic amyloid-beta(1–42) aggregates before and after covalent cross-linking. Implications for Deducing the Structure of Endogenous Amyloid-beta Oligomers. Biochemistry. 48(49), 11796–11806 (2009)CrossRefGoogle Scholar
  36. 36.
    Al-Hilaly, Y.K., Williams, T.L., Stewart-Parker, M., Ford, L., Skaria, E., Cole, M., Bucher, W.G., Morris, K.L., Sada, A.A., Thorpe, J.R., Serpell, L.C.: A central role for dityrosine crosslinking of amyloid-beta in Alzheimer’s disease. Acta Neuropathol. Commun. 1, 83 (2013)CrossRefGoogle Scholar
  37. 37.
    Rahimi, F.; Maiti, P.; Bitan, G.: Photo-induced cross-linking of unmodified proteins (PICUP) applied to amyloidogenic peptides. J. Vis. Exp. 23 (2009).
  38. 38.
    Bitan, G., Teplow, D.B.: Rapid photochemical cross-linking—a new tool for studies of metastable, amyloidogenic protein assemblies. Acc. Chem. Res. 37(6), 357–364 (2004)CrossRefGoogle Scholar
  39. 39.
    Bitan, G.: Structural study of metastable amyloidogenic protein oligomers by photo-induced cross-linking of unmodified proteins. Methods Enzymol. 413, 217–236 (2006)CrossRefGoogle Scholar
  40. 40.
    Bleiholder, C., Dupuis, N.F., Wyttenbach, T., Bowers, M.T.: Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to beta-sheet in amyloid fibril formation. Nat. Chem. 3(2), 172–177 (2011)CrossRefGoogle Scholar
  41. 41.
    Grasso, G., Mineo, P., Rizzarelli, E., Spoto, G.: MALDI, AP/MALDI and ESI techniques for the MS detection of amyloid beta-peptides. Int. J. Mass Spectrom. 282(1–2), 50–55 (2009)CrossRefGoogle Scholar
  42. 42.
    Martineau, E., de Guzman, J.M., Rodionova, L., Kong, X., Mayer, P.M.: Investigation of the noncovalent interactions between anti-amyloid agents and amyloid beta peptides by ESI-MS. J. Am. Soc. Mass Spectrom. 21(9), 1506–1514 (2010)CrossRefGoogle Scholar
  43. 43.
    Vrana, J.A., Theis, J.D., Dasari, S., Mereuta, O.M., Dispenzieri, A., Zeldenrust, S.R., Gertz, M.A., Kurtin, P.J., Grogg, K.L., Dogan, A.: Clinical diagnosis and typing of systemic amyloidosis in subcutaneous fat aspirates by mass spectrometry-based proteomics. Haematologica. 99(7), 1239–1247 (2014)CrossRefGoogle Scholar
  44. 44.
    Smith, A.M., Jahn, T.R., Ashcroft, A.E., Radford, S.E.: Direct observation of oligomeric species formed in the early stages of amyloid fibril formation using electrospray ionisation mass spectrometry. J. Mol. Biol. 364(1), 9–19 (2006)CrossRefGoogle Scholar
  45. 45.
    Ashcroft, A.E.: Mass spectrometry and the amyloid problem-how far can we go in the gas phase? J. Am. Soc. Mass Spectrom. 21(7), 1087–1096 (2010)CrossRefGoogle Scholar
  46. 46.
    Henderson, S.C., Valentine, S.J., Counterman, A.E., Clemmer, D.E.: ESI/ion trap/ion mobility/time-of-flight mass spectrometry for rapid and sensitive analysis of biomolecular mixtures. Anal. Chem. 71(2), 291–301 (1999)CrossRefGoogle Scholar
  47. 47.
    Hoaglund, C.S., Valentine, S.J., Sporleder, C.R., Reilly, J.P., Clemmer, D.E.: Three-dimensional ion mobility TOFMS analysis of electrosprayed biomolecules. Anal. Chem. 70(11), 2236–2242 (1998)CrossRefGoogle Scholar
  48. 48.
    Ionuţ Iurascu, M., Cozma, C., Tomczyk, N., Rontree, J., Desor, M., Drescher, M., Przybylski, M.: Structural characterization of beta-amyloid oligomer-aggregates by ion mobility mass spectrometry and electron spin resonance spectroscopy. Anal. Bioanal. Chem. 395(8), 2509–2519 (2009)CrossRefGoogle Scholar
  49. 49.
    Bernstein, S.L., Dupuis, N.F., Lazo, N.D., Wyttenbach, T., Condron, M.M., Bitan, G., Teplow, D.B., Shea, J.E., Ruotolo, B.T., Robinson, C.V., Bowers, M.T.: Amyloid-beta protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat. Chem. 1(4), 326–331 (2009)CrossRefGoogle Scholar
  50. 50.
    Bernstein, S.L., Wyttenbach, T., Baumketner, A., Shea, J.E., Bitan, G., Teplow, D.B., Bowers, M.T.: Amyloid beta-protein: monomer structure and early aggregation states of Abeta 42 and its Pro(19) alloform. J. Am. Chem. Soc. 127(7), 2075–2084 (2005)CrossRefGoogle Scholar
  51. 51.
    Baumketner, A., Bernstein, S.L., Wyttenbach, T., Bitan, G., Teplow, D.B., Bowers, M.T., Shea, J.E.: Amyloid beta-protein monomer structure: a computational and experimental study. Protein Sci. 15(3), 420–428 (2006)CrossRefGoogle Scholar
  52. 52.
    Zheng, X.Y., Liu, D., Klärner, F.-G., Schraer, T., Bitan, G., Bowers, M.T.: Amyloid beta-protein assembly: the effect of molecular tweezers CLR01 and CLR03. J. Phys. Chem. B. 119(14), 4831–4841 (2015)CrossRefGoogle Scholar
  53. 53.
    Illes-Toth, E., Smith, D.P.: Conformations and assembly of amyloid oligomers by electrospray ionisation ion mobility spectrometry-mass spectrometry. Curr. Anal. Chem. 9(2), 165–180 (2013)Google Scholar
  54. 54.
    Anker, J.N., Hall, W.P., Lambert, M.P., Velasco, P.T., Mrksich, M., Klein, W.L., Van Duyne, R.P.: Detection and identification of Bioanalytes with high resolution LSPR spectroscopy and MALDI mass spectrometry. J. Phys. Chem. C. 113(15), 5891–5894 (2009)CrossRefGoogle Scholar
  55. 55.
    Song, F.H.: A study of noncovalent protein complexes by matrix-assisted laser desorption/ionization. J. Am. Soc. Mass Spectrom. 18(7), 1286–1290 (2007)CrossRefGoogle Scholar
  56. 56.
    Madler, S., Erba, E.B., Zenobi, R.: MALDI-ToF mass spectrometry for studying noncovalent complexes of biomolecules. Appl. Maldi-Tof Spectrosc. 331, 1–36 (2013)Google Scholar
  57. 57.
    Farmer, T.B., Caprioli, R.M.: Determination of protein-protein interactions by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 33(8), 697–704 (1998)CrossRefGoogle Scholar
  58. 58.
    Ji, Y., Permanne, B., Sigurdsson, E.M., Holtzman, D.M., Wisniewski, T.: Amyloid beta40/42 clearance across the blood-brain barrier following intra-ventricular injections in wild-type, apoE knock-out and human apoE3 or E4 expressing transgenic mice. J. Alzheimer’s Dis. 3(1), 23–30 (2001)CrossRefGoogle Scholar
  59. 59.
    Vadukul, D.M., Gbajumo, O., Marshall, K.E., Serpell, L.C.: Amyloidogenicity and toxicity of the reverse and scrambled variants of amyloid-beta 1-42. FEBS Lett. 591(5), 822–830 (2017)CrossRefGoogle Scholar
  60. 60.
    Solito, R., Corti, F., Fossati, S., Mezhericher, E., Donnini, S., Ghiso, J., Giachetti, A., Rostagno, A., Ziche, M.: Dutch and arctic mutant peptides of beta amyloid(1-40) differentially affect the FGF-2 pathway in brain endothelium. Exp. Cell Res. 315(3), 385–395 (2009)CrossRefGoogle Scholar
  61. 61.
    Kumar-Singh, S., Julliams, A., Nuydens, R., Ceuterick, C., Labeur, C., Serneels, S., Vennekens, K., Van Osta, P., Geerts, H., De Strooper, B., Van Broeckhoven, C.: In vitro studies of Flemish, Dutch, and wild-type beta-amyloid provide evidence for two-staged neurotoxicity. Neurobiol. Dis. 11(2), 330–340 (2002)CrossRefGoogle Scholar
  62. 62.
    Munoz, F.J., Opazo, C., Gil-Gómez, G., Tapia, G., Fernández, V., Valverde, M.A., Inestrosa, N.C.: Vitamin E but not 17 beta-estradiol protects against vascular toxicity induced by beta-amyloid wild type and the Dutch amyloid variant. J. Neurosci. 22(8), 3081–3089 (2002)CrossRefGoogle Scholar
  63. 63.
    Wang, Z.Z., Natté, R., Berliner, J.A., van Duinen, S.G., Vinters, H.V.: Toxicity of Dutch (E22Q) and Flemish (A21G) mutant amyloid beta proteins to human cerebral microvessel and aortic smooth muscle cells. Stroke. 31(2), 534–538 (2000)CrossRefGoogle Scholar
  64. 64.
    Morkuniene, R., Cizas, P., Jankeviciute, S., Petrolis, R., Arandarcikaite, O., Krisciukaitis, A., Borutaite, V.: Small Abeta(1–42) oligomer-induced membrane depolarization of neuronal and microglial cells: role of N-methyl-D-aspartate receptors. J. Neurosci. Res. 93(3), 475–486 (2015)CrossRefGoogle Scholar
  65. 65.
    Zou, K., Kim, D., Kakio, A., Byun, K., Gong, J.S., Kim, J., Kim, M., Sawamura, N., Nishimoto, S., Matsuzaki, K., Lee, B., Yanagisawa, K., Michikawa, M.: Amyloid beta-protein (Abeta)1–40 protects neurons from damage induced by Abeta 1–42 in culture and in rat brain. J. Neurochem. 87(3), 609–619 (2003)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Jasmine S.-H. Wang
    • 1
    • 2
    • 3
  • Shawn N. Whitehead
    • 3
  • Ken K.-C. Yeung
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of Western OntarioLondonCanada
  2. 2.Department of BiochemistryUniversity of Western OntarioLondonCanada
  3. 3.Vulnerable Brain Laboratory, Department of Anatomy and Cell BiologyUniversity of Western OntarioLondonCanada

Personalised recommendations