Neutral Loss Scan - Based Strategy for Integrated Identification of Amorfrutin Derivatives, New Peroxisome Proliferator-Activated Receptor Gamma Agonists, from Amorpha Fruticosa by UPLC-QqQ-MS/MS and UPLC-Q-TOF-MS

  • Chu Chen
  • Ying Xue
  • Qing-Miao Li
  • Yan Wu
  • Jian Liang
  • Lin-Sen Qing
Research Article

Abstract

Amorfrutins with a 2-hydroxybenzoic acid core structure are promising natural PPARγ agonists with potent antidiabetic activity. Owing to the complex matrix and low concentration in botanical material, the identification of unknown amorfrutins remains a challenge. In the present study, a combined application of UPLC-Q-TOF-MS and UPLC-QqQ-MS was developed to discover unknown amorfrutins from fruits of Amorpha fruticosa. First, reference compounds of amorfrutin A (AA), amorfrutin B (AB), and 2-carboxy-3,5-dihydroxy-4-geranylbibenzyl (AC) were analyzed using UPLC-Q-TOF-MS to reveal the characteristic fragment ions and the possible neutral loss. Second, the extract of A. fruticosa was separated and screened by UPLC-QqQ-MS using neutral loss scan to find out suspect compounds associated with the specified neutral fragment Δm/z 44. Third, the extract was re-analyzed by UPLC-Q-TOF-MS to obtain the exact mass of quasi-molecular ion and fragment ions of each suspect compound, and to subsequently calculate their corresponding molecular formulas. Finally, according to the molecular formula of suspect compound and its fragment ions and comparing with literature data, structure elucidation of four unidentified amorfrutins was achieved. The results indicated that the combination of QqQ-MS neutral loss scan and Q-TOF-MS molecular formula calculation was proven to be a powerful tool for unknown natural product identification, and this strategy provides an effective solution to discover natural products or metabolites of trace content.

Graphical Abstract

Keywords

Amorfrutins PPARγ agonists Amorpha fruticosa UPLC-QqQ-MS/MS UPLC-Q-TOF-MS Neutral loss scan 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21202161) and the Basic Scientific Research Foundation of Sichuan Academy of Chinese Medicine Sciences (A-2016N-38).

Supplementary material

13361_2018_1891_MOESM1_ESM.pdf (377 kb)
ESM 1 (PDF 376 kb)

References

  1. 1.
    Lehrke, M., Lazar, M.A.: The many faces of PPARgamma. Cell. 123, 993–999 (2005)CrossRefGoogle Scholar
  2. 2.
    Rosen, C.J.: Revisiting the rosiglitazone story--lessons learned. New Engl. J. Med. 363, 803–806 (2010)CrossRefGoogle Scholar
  3. 3.
    Mitscher, L.A., Park, Y.H., Alshamma, A., Hudson, P.B., Haas, T.: Amorfrutin-A and amorfrutin-B, bibenzyl anti-microbial agents from Amorpha fruticosa. Phytochemistry. 20, 781–785 (1981)CrossRefGoogle Scholar
  4. 4.
    Weidner, C., de Groot, J.C., Prasad, A., Freiwald, A., Quedenau, C., Kliem, M., Witzke, A., Kodelja, V., Han, C.-T., Giegold, S., Baumann, M., Klebl, B., Siems, K., Mueller-Kuhrt, L., Schuermann, A., Schueler, R., Pfeiffer, A.F.H., Schroeder, F.C., Buessow, K., Sauer, S.: Amorfrutins are potent antidiabetic dietary natural products. Proc. Natl. Acad. Sci. USA. 109, 7257–7262 (2012)CrossRefGoogle Scholar
  5. 5.
    de Groot, J.C., Weidner, C., Krausze, J., Kawamoto, K., Schroeder, F.C., Sauer, S., Buessow, K.: Structural characterization of amorfrutins bound to the peroxisome proliferator-activated receptor gamma. J. Med. Chem. 56, 1535–1543 (2013)CrossRefGoogle Scholar
  6. 6.
    Weidner, C., Wowro, S.J., Freiwald, A., Kawamoto, K., Witzke, A., Kliem, M., Siems, K., Müllerkuhrt, L., Schroeder, F.C., Sauer, S.: Amorfrutin B is an efficient natural peroxisome proliferator-activated receptor gamma (PPARγ) agonist with potent glucose-lowering properties. Diabetologia. 56, 1802–1812 (2013)CrossRefGoogle Scholar
  7. 7.
    Sauer, S.: Amorfrutins: a promising class of natural products that are beneficial to health. Chembiochem. 15, 1231–1238 (2014)CrossRefGoogle Scholar
  8. 8.
    Muharini, R., Diaz, A., Ebrahim, W., Mandi, A., Kurtan, T., Rehberg, N., Kalscheuer, R., Hartmann, R., Orfali, R.S., Lin, W., Liu, Z., Proksch, P.: Antibacterial and cytotoxic phenolic metabolites from the fruits of Amorpha fruticosa. J. Nat. Prod. 80, 169–180 (2017)CrossRefGoogle Scholar
  9. 9.
    Hanus, L.O., Meyer, S.M., Munoz, E., Taglialatela-Scafati, O., Appendino, G.: Phytocannabinoids: a unified critical inventory. Nat. Prod. Rep. 33, 1357–1392 (2016)CrossRefGoogle Scholar
  10. 10.
    Qing, L.-S., Xue, Y., Zhang, J.-G., Zhang, Z.-F., Liang, J., Jiang, Y., Liu, Y.-M., Liao, X.: Identification of flavonoid glycosides in Rosa chinensis flowers by liquid chromatography–tandem mass spectrometry in combination with 13C nuclear magnetic resonance. J. Chromatogr. A. 1249, 130–137 (2012)Google Scholar
  11. 11.
    Qing, L.-S., Shan, X.-Q., Xu, X.-M., Xue, Y., Deng, W.-L., Li, B.-G., Wang, X.-L., Liao, X.: Rapid probe and isolation of bioactive compounds from Dioscorea panthaica using human serum albumin functionalized magnetic nano-particles (HSA-MNPs)-based ligand fishing coupled with electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 24, 3335–3339 (2010)Google Scholar
  12. 12.
    Berset, J.D., Mermer, S., Robel, A.E., Walton, V.M., Chien, M.L., Field, J.A.: Direct residue analysis of systemic insecticides and some of their relevant metabolites in wines by liquid chromatography-mass spectrometry. J. Chromatogr. A. 1506, 45–54 (2017)CrossRefGoogle Scholar
  13. 13.
    Boelaert, J., Lynen, F., Glorieux, G., Schepers, E., Neirynck, N., Vanholder, R.: Metabolic profiling of human plasma and urine in chronic kidney disease by hydrophilic interaction liquid chromatography coupled with time-of-flight mass spectrometry: a pilot study. Anal. Bioanal. Chem. 409, 2201–2211 (2017)CrossRefGoogle Scholar
  14. 14.
    Liu, G.-D., Zhao, Y.-W., Li, Y.-J., Wang, X.-J., Si, H.-H., Huang, W.-Z., Wang, Z.-Z., Ma, S.-P., Xiao, W.: Qualitative and quantitative analysis of major constituents from Dazhu Hongjingtian capsule by UPLC/Q-TOF-MS/MS combined with UPLC/QQQ-MS/MS. Biomed. Chromatogr. 31, e3887 (2017)CrossRefGoogle Scholar
  15. 15.
    Chen, Y.J., Liang, Z.T., Zhu, Y., Xie, G.Y., Tian, M., Zhao, Z.Z., Qin, M.J.: Tissue-specific metabolites profiling and quantitative analyses of flavonoids in the rhizome of Belamcanda chinensis by combining laser-microdissection with UHPLC-Q/TOF-MS and UHPLC–QqQ-MS. Talanta. 130, 585–597 (2014)CrossRefGoogle Scholar
  16. 16.
    Parejo, I., Jáuregui, O., Viladomat, F., Bastida, J., Codina, C.: Characterization of acylated flavonoid-O-glycosides and methoxylated flavonoids from Tagetes maxima by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 18, 2801–2810 (2004)CrossRefGoogle Scholar
  17. 17.
    Montesano, C., Sergi, M., Moro, M., Napoletano, S., Romolo, F.S., Carlo, M.D., Compagnone, D., Curini, R.: Screening of methylenedioxyamphetamine- and piperazine-derived designer drugs in urine by LC-MS/MS using neutral loss and precursor ion scan. J. Mass Spectrom. 48, 49–59 (2013)Google Scholar
  18. 18.
    Kucharska, A., Fecka, I.: Identification of iridoids in edible honeysuckle berries (Lonicera caerulea L. var. kamtschatica Sevast.) by UPLC-ESI-qTOF-MS/MS. Molecules. 21, 1157 (2016)CrossRefGoogle Scholar
  19. 19.
    Dat, N.T., Lee, J.H., Lee, K., Hong, Y.S., Kim, Y.H., Lee, J.J.: Phenolic constituents of Amorpha fruticosa that inhibit NF-κB activation and related gene expression. J. Nat. Prod. 71, 1696–1700 (2008)CrossRefGoogle Scholar
  20. 20.
    Xie, J., Li, J., Liang, J., Luo, P., Qing, L.-S., Ding, L.-S.: Determination of contents of catechins in oolong teas by quantitative analysis of multi-components via a single marker (QAMS) method. Food Anal. Method. 10, 363–368 (2017)CrossRefGoogle Scholar
  21. 21.
    Geis-Asteggiante, L., Nuñez, A., Lehotay, S.J., Lightfield, A.R.: Structural characterization of product ions by electrospray ionization and quadrupole time-of-flight mass spectrometry to support regulatory analysis of veterinary drug residues in foods. Rapid Commun. Mass Sp. 28, 1061–1081 (2014)CrossRefGoogle Scholar
  22. 22.
    Gross, M.L.: Accurate masses for structure confirmation. J. Am. Soc. Mass Spectr. 5, 57 (1994)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
  2. 2.Sichuan Academy of Chinese Medicine SciencesChengduChina
  3. 3.Sichuan Provincial Center for Disease Control and PreventionChengduChina
  4. 4.Natural Products Research Center, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina

Personalised recommendations