A Miniaturized Fourier Transform Electrostatic Linear Ion Trap Mass Spectrometer: Mass Range and Resolution

  • Joshua T. Johnson
  • Kenneth W. Lee
  • Jay S. Bhanot
  • Scott A. McLuckeyEmail author
Research Article


Mass resolution (MMFWHM) was increased by reducing the axial length of a Fourier transform electrostatic linear ion trap (FT-ELIT) mass spectrometer. The increase in mass resolution corresponds directly to increased axial ion frequencies in the FT-ELIT. Increased mass resolution was demonstrated for equivalent transient lengths in a 5.25″ versus 2.625″ ELIT using the isotopes of [bradykinin+2H]2+ and [insulin+5H]5+ as test ions. Both bradykinin and insulin show mass resolution increases of ~ 90% allowing baseline resolution of the [insulin+5H]5+ isotopes after only 300 ms of data acquisition. Relative changes in mass/charge range were explored using mirror switching to trap ions injected axially into the ELIT. When trapping ions using mirror switching, the mass/charge range in a FT-ELIT mass spectrometer for a given switch time is determined by the time required for fast ions to enter and exit the trap after one reflection versus the time it takes for slow ions to enter the trap. By reducing the length of the FT-ELIT mass spectrometer while maintaining a constant distance from the point from which ions are initially accelerated to the entrance mirror, only the low m/z limit is affected for a given mirror switching time. For the two ELIT lengths examined here, the effective mass/charge range at any given switch time is reduced from m/zlow-8.9*m/zlow for the 5.25″ ELIT to m/zlow-5.2*m/zlow for the 2.625″ ELIT.

Graphical Abstract


Fourier transform mass spectrometry Electrostatic linear ion trap Miniaturization 



This work was supported by the National Science Foundation NSF CHE-1708338. The instrument was initially constructed with AB Sciex support. We thank Mark Carlsen, Randy Replogle, Phil Wyss, Tim Selby, and Ryan Hilger of the Jonathan Amy Facility for Chemical Instrumentation for helpful discussions and their help with construction of the mass spectrometer. We also acknowledge Mircea Guna, Dr. James W. Hager, and Dr. Eric Dzeikonski of AB Sciex for helpful discussions, data analysis software, and for providing the collision cell with LINAC.

Supplementary material

13361_2018_2126_MOESM1_ESM.docx (522 kb)
ESM 1 (DOCX 522 kb)


  1. 1.
    Kim, S., Rodgers, R.P., Marshall, A.G.: Truly “exact” mass: elemental composition can be determined uniquely from molecular mass measurement at ∼0.1 mDa accuracy for molecules up to ∼500 Da. Int. J. Mass Spectrom. 251, 260–265 (2006)CrossRefGoogle Scholar
  2. 2.
    Smith, D.F., Podgorski, D.C., Rodgers, R.P., Blakney, G.T., Hendrickson, C.L.: 21 tesla FT-ICR mass spectrometer for ultrahigh-resolution analysis of complex organic mixtures. Anal. Chem. 90, 2041–2047 (2018)CrossRefGoogle Scholar
  3. 3.
    Dziekonski, E.T., Johnson, J.T., Lee, K.W., McLuckey, S.A.: Fourier-transform MS and closed-path multireflection time-of-flight MS using an electrostatic linear ion trap. Anal. Chem. 89, 10965–10972 (2017)CrossRefGoogle Scholar
  4. 4.
    Marshall, A.G., Hendrickson, C.L., Jackson, G.S.: Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998)CrossRefGoogle Scholar
  5. 5.
    Comisarow, M.B., Marshall, A.G.: Selective-phase ion cyclotron resonance spectroscopy. Can. J. Chem. 52, 1997–1999 (1974)CrossRefGoogle Scholar
  6. 6.
    Marshall, A.G., Comisarow, M.B., Parisod, G.: Relaxation and spectral line shape in Fourier transform ion resonance spectroscopy. J. Chem. Phys. 71, 4434–4444 (1979)CrossRefGoogle Scholar
  7. 7.
    Hilger, R.T., Wyss, P.J., Santini, R.E., McLuckey, S.A.: Absorption mode Fourier transform electrostatic linear ion trap mass spectrometry. Anal. Chem. 85, 8075–8079 (2013)CrossRefGoogle Scholar
  8. 8.
    Lange, O., Damoc, E., Wieghaus, A., Makarov, A.: Enhanced Fourier transform for Orbitrap mass spectrometry. Int. J. Mass Spectrom. 369, 16–22 (2014)CrossRefGoogle Scholar
  9. 9.
    Comisarow, M.B., Marshall, A.G.: Theory of Fourier transform ion cyclotron resonance mass spectroscopy. I. Fundamental equations and low-pressure line shape. J. Chem. Phys. 64, 110–119 (1976)CrossRefGoogle Scholar
  10. 10.
    Boldin, I.A., Nikolaev, E.N.: Fourier transform ion cyclotron resonance cell with dynamic harmonization of the electric field in the whole volume by shaping of the excitation and detection electrode assembly. Rapid Commun. Mass Spectrom. 25, 122–126 (2011)CrossRefGoogle Scholar
  11. 11.
    Nikolaev, E.N., Rakov, V., Futrell, J.H.: Analysis of harmonics for an elongated FTMS cell with multiple electrode detection. Int. J. Mass Spectrom. Ion Process. 157, 215–232 (1996)CrossRefGoogle Scholar
  12. 12.
    Dziekonski, E.T., Santini, R.E., McLuckey, S.A.: A dual detector Fourier transform electrostatic linear ion trap utilizing in-trap potential lift. Int. J. Mass Spectrom. 405, 1–8 (2016)CrossRefGoogle Scholar
  13. 13.
    Denisov, E., Damoc, E., Lange, O., Makarov, A.: Orbitrap mass spectrometry with resolving powers above 1,000,000. Int. J. Mass Spectrom. 325, 80–85 (2012)CrossRefGoogle Scholar
  14. 14.
    Shaw, J.B., Gorshkov, M.V., Wu, Q., Paša-Tolić, L.: High speed intact protein characterization using 4X frequency multiplication, ion trap harmonization, and 21 tesla FTICR-MS. Anal. Chem. 90, 5557–5562 (2018)CrossRefGoogle Scholar
  15. 15.
    Marshall, A.G., Guan, S.: Advantages of high magnetic field for Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 10, 1819–1823 (1996)CrossRefGoogle Scholar
  16. 16.
    Zajfman, D., Rudich, Y., Sagi, I., Strasser, D., Savin, D.W., Goldberg, S., Rappaport, M., Heber, O.: High resolution mass spectrometry using a linear electrostatic ion beam trap. Int. J. Mass Spectrom. 229, 55–60 (2003)CrossRefGoogle Scholar
  17. 17.
    Ring, S., Pedersen, H.B., Heber, O., Rappaport, M.L., Witte, P., Bhushan, K.G., Altstein, N., Rudich, Y., Sagi, I., Zajfman, D.: Fourier transform time-of-flight mass spectrometry in an electrostatic ion beam trap. Anal. Chem. 72, 4041–4046 (2000)CrossRefGoogle Scholar
  18. 18.
    Pan, Y., Ridge, D., Wronka, J., Rockwood, A.L., Marshall, A.: Resolution improvement by using harmonic detection in an ion cyclotron resonance mass spectrometer. Rapid Commun. Mass Spectrom. 1, 120–121 (1987)CrossRefGoogle Scholar
  19. 19.
    Pan, Y., Ridge, D., Rockwood, A.L.: Harmonic signal enhancement in ion cyclotron resonance mass spectrometry using multiple electrode detection. Int. J. Mass Spectrom. Ion Process. 84, 293–304 (1988)CrossRefGoogle Scholar
  20. 20.
    Nikolaev, E., Gorshkov, M.: Dynamics of ion motion in an elongated cylindrical cell of an ICR spectrometer and the shape of the signal registered. Int. J. Mass Spectrom. Ion Process. 64, 115–125 (1985)CrossRefGoogle Scholar
  21. 21.
    Limbach, P.A., Grosshans, P.B., Marshall, A.G.: Harmonic enhancement of a detected ion cyclotron resonance signal by use of segmented detection electrodes. Int. J. Mass Spectrom. Ion Process. 123, 41–47 (1993)CrossRefGoogle Scholar
  22. 22.
    Mathur, R., O'Connor, P.B.: Artifacts in Fourier transform mass spectrometry. Rapid Commun. Mass Spectrom. 23, 523–529 (2009)CrossRefGoogle Scholar
  23. 23.
    Dziekonski, E.T., Johnson, J.T., McLuckey, S.A.: On the utility of higher harmonics in electrospray ionization Fourier transform electrostatic linear ion trap mass spectrometry. Anal. Chem. 89, 4392–4397 (2017)CrossRefGoogle Scholar
  24. 24.
    Grosshans, P.B., Marshall, A.G.: Can Fourier transform mass spectral resolution be improved by detection at harmonic multiples of the fundamental ion cyclotron orbital frequency? Int. J. Mass Spectrom. Ion Process. 107, 49–81 (1991)CrossRefGoogle Scholar
  25. 25.
    Smith, J.W., Siegel, E.E., Maze, J.T., Jarrold, M.F.: Image charge detection mass spectrometry: pushing the envelope with sensitivity and accuracy. Anal. Chem. 83, 950–956 (2011)CrossRefGoogle Scholar
  26. 26.
    Barney, B.L., Daly, R.T., Austin, D.E.: A multi-stage image charge detector made from printed circuit boards. Rev. Sci. Instrum. 84, 114101 (2013)CrossRefGoogle Scholar
  27. 27.
    Gamero-Castaño, M.: Induction charge detector with multiple sensing stages. Rev. Sci. Instrum. 78, 043301 (2007)CrossRefGoogle Scholar
  28. 28.
    Hogan, J.A., Jarrold, M.F.: Optimized electrostatic linear ion trap for charge detection mass spectrometry. J. Am. Soc. Mass Spectrom. 29, 1–10 (2018)Google Scholar
  29. 29.
    Elliott, A.G., Merenbloom, S.I., Chakrabarty, S., Williams, E.R.: Single particle analyzer of mass: a charge detection mass spectrometer with a multi-detector electrostatic ion trap. Int. J. Mass Spectrom. 414, 45–55 (2017)CrossRefGoogle Scholar
  30. 30.
    Hilger, R.T., Dziekonski, E.T., Santini, R.E., McLuckey, S.A.: Injecting electrospray ions into a Fourier transform electrostatic linear ion trap. Int. J. Mass Spectrom. 378, 281–287 (2015)CrossRefGoogle Scholar
  31. 31.
    Hilger, R.T., Santini, R.E., McLuckey, S.A.: Square wave modulation of a mirror lens for ion isolation in a Fourier transform electrostatic linear ion trap mass spectrometer. Int. J. Mass Spectrom. 362, 1–8 (2014)CrossRefGoogle Scholar
  32. 32.
    Hilger, R.T., Santini, R.E., McLuckey, S.A.: Tandem mass spectrometry in an electrostatic linear ion trap modified for surface-induced dissociation. Anal. Chem. 86, 8822–8828 (2014)CrossRefGoogle Scholar
  33. 33.
    Dziekonski, E.T., Johnson, J.T., Hilger, R.T., McIntyre, C.L., Santini, R.E., McLuckey, S.A.: Voltage-induced frequency drift correction in fourier transform electrostatic linear ion trap mass spectrometry using mirror-switching. Int. J. Mass Spectrom. 410, 12–21 (2016)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations