A Multifaceted Mass Spectrometric Method to Probe Feeding Related Neuropeptide Changes in Callinectes sapidus and Carcinus maenas

  • Yuzhuo Zhang
  • Kellen DeLaney
  • Limei Hui
  • Junhua Wang
  • Robert M. Sturm
  • Lingjun Li
Focus: 29th Sanibel Conference, Peptidomics: Bridging the Gap Between Proteomics and Metabolomics by MS: Research Article


Food intake is regulated by various neuromodulators, including numerous neuropeptides. However, it remains elusive at the molecular and cellular level as to how these important chemicals regulate internal processes and which regions of the neuronal organs are responsible for regulating the behavior. Here we report a comparative neuropeptidomic analysis of the brain and pericardial organ (PO) in response to feeding in two well-studied crustacean physiology model organisms, Callinectes sapidus and Carcinus maenas, using mass spectrometry (MS) techniques. A multifaceted MS-based approach has been developed to obtain complementary information on the expression changes of a large array of neuropeptides in the brain and PO. The method employs stable isotope labeling of brain and PO extracts for relative MS quantitation, capillary electrophoresis (CE)-MS for fractionation and high-specificity analysis, and mass spectrometric imaging (MSI) for in-situ molecular mapping of peptides. A number of neuropeptides, including RFamides, B-type allatostatins (AST-B), RYamides, and orcokinins exhibit significant changes in abundance after feeding in this investigation. Peptides from the AST-B family found in PO tissue were shown to have both altered expression and localization changes after feeding, indicating that they may be a class of vital neuropeptide regulators involved in feeding behavior.

Graphical Abstract


Peptidomics Neuropeptides Isotopic labeling Mass spectrometric imaging Capillary electrophoresis 



The authors thank the University of Wisconsin-Biotechnology Center Mass Spectrometry Facility, Dr. Amy Harms, and Dr. Mike Sussman for access to the MALDI-TOF/TOF instrument. This work was supported by the National Institutes of Health through grants 1R01DK071801 and R01NS029436. K.D acknowledges a predoctoral fellowship supported by the National Institutes of Health, under Ruth L. Kirschstein National Research Service Award T32 HL 007936 from the National Heart Lung and Blood Institute to the University of Wisconsin-Madison Cardiovascular Research Center.

Supplementary material

13361_2017_1888_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1804 kb)


  1. 1.
    Hillebrand, J.J., de Wied, D., Adan, R.A.: Neuropeptides, food intake, and body weight regulation: a hypothalamic focus. Peptides. 23, 2283–2306 (2002)CrossRefGoogle Scholar
  2. 2.
    Schwartz, M.W., Woods, S.C., Porte Jr., D., Seeley, R.J., Baskin, D.G.: Central nervous system control of food intake. Nature. 404, 661–671 (2000)CrossRefGoogle Scholar
  3. 3.
    Lin, X., Volkoff, H., Narnaware, Y., Bernier, N.J., Peyon, P., Peter, R.E.: Brain regulation of feeding behavior and food intake in fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 126, 415–434 (2000)CrossRefGoogle Scholar
  4. 4.
    Gao, Q., Horvath, T.L.: Neurobiology of feeding and energy expenditure. Ann. Rev. Neurosci. 30, 367–398 (2007)CrossRefGoogle Scholar
  5. 5.
    Podvin, S., Bundey, R., Toneff, T., Ziegler, M., Hook, V.: Profiles of secreted neuropeptides and catecholamines illustrate similarities and differences in response to stimulation by distinct secretagogues. Mol. Cell. Neurosci. 68, 177–185 (2015)CrossRefGoogle Scholar
  6. 6.
    Hook, V., Bandeira, N.: Neuropeptidomics mass spectrometry reveals signaling networks generated by distinct protease pathways in human systems. J. Am. Soc. Mass Spectrom. 26, 1970–1980 (2015)CrossRefGoogle Scholar
  7. 7.
    Zhang, X.Z., Petruzziello, F., Zani, F., Fouillen, L., Andren, P.E., Solinas, G., Rainer, G.: High identification rates of endogenous neuropeptides from mouse brain. J. Proteome Res. 11, 2819–2827 (2012)CrossRefGoogle Scholar
  8. 8.
    Goldsmith, C.J., Städele, C., Stein, W.: Optical imaging of neuronal activity and visualization of fine neural structures in non-desheathed nervous systems. PLoS One. 9(7), e103459 (2014)CrossRefGoogle Scholar
  9. 9.
    Daur, N., Diehl, F., Mader, W., Stein, W.: The stomatogastric nervous system as a model for studying sensorimotor interactions in real-time closed-loop conditions. Front Comput. Neurosci. 6, 13 (2012)CrossRefGoogle Scholar
  10. 10.
    Valassi, E., Scacchi, M., Cavagnini, F.: Neuroendocrine control of food intake. Nutrition, metabolism, and cardiovascular diseases. 18, 158–168 (2008)CrossRefGoogle Scholar
  11. 11.
    Jing, J., Vilim, F.S., Horn, C.C., Alexeeva, V., Hatcher, N.G., Sasaki, K., Yashina, I., Zhurov, Y., Kupfermann, I., Sweedler, J.V., Weiss, K.R.: From hunger to satiety: reconfiguration of a feeding network by aplysia neuropeptide Y. J. Neurosci. 27, 3490–3502 (2007)CrossRefGoogle Scholar
  12. 12.
    Volkoff, H.: The role of neuropeptide Y, orexins, cocaine, and amphetamine-related transcript, cholecystokinin, amylin and leptin in the regulation of feeding in fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 144, 325–331 (2006)CrossRefGoogle Scholar
  13. 13.
    Volkoff, H., Canosa, L.F., Unniappan, S., Cerda-Reverter, J.M., Bernier, N.J., Kelly, S.P., Peter, R.E.: Neuropeptides and the control of food intake in fish. Gen. Comp. Endocrinol. 142, 3–19 (2005)CrossRefGoogle Scholar
  14. 14.
    Woods, S.C., Figlewicz, D.P., Madden, L., Porte Jr., D., Sipols, A.J., Seeley, R.J.: NPY and food intake: discrepancies in the model. Regul. Pept. 75–76, 403–408 (1998)CrossRefGoogle Scholar
  15. 15.
    Kupfermann, I., Weiss, K.R.: Motor program selection in simple model systems. Curr. Opin. Neurobiol. 11, 673–677 (2001)CrossRefGoogle Scholar
  16. 16.
    Sweedler, J.V., Li, L., Rubakhin, S.S., Alexeeva, V., Dembrow, N.C., Dowling, O., Jing, J., Weiss, K.R., Vilim, F.S.: Identification and characterization of the feeding circuit-activating peptides, a novel neuropeptide family of aplysia. J. Neurosci. 22, 7797–7808 (2002)CrossRefGoogle Scholar
  17. 17.
    Nusbaum, M.P., Beenhakker, M.P.: A small-systems approach to motor pattern generation. Nature. 417, 343–350 (2002)CrossRefGoogle Scholar
  18. 18.
    Marder, E.: Motor pattern generation. Curr. Opin. Neurobiol. 10, 691–698 (2000)CrossRefGoogle Scholar
  19. 19.
    Fuzita, F.J., Pinkse, M.W., Patane, J.S., Verhaert, P.D., Lopes, A.R.: High throughput techniques to reveal the molecular physiology and evolution of digestion in spiders. BMC Genomics. 17, 716 (2016)CrossRefGoogle Scholar
  20. 20.
    de Bono, M., Bargmann, C.I.: Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell. 94, 679–689 (1998)CrossRefGoogle Scholar
  21. 21.
    Arora, S.: Anubhuti: Role of neuropeptides in appetite regulation and obesity–a review. Neuropeptides. 40, 375–401 (2006)CrossRefGoogle Scholar
  22. 22.
    Shen, P., Cai, H.N.: Drosophila neuropeptide F mediates integration of chemosensory stimulation and conditioning of the nervous system by food. J. Neurobiol. 47, 16–25 (2001)CrossRefGoogle Scholar
  23. 23.
    Li, C., Kim, K., Nelson, L.S.: FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. Brain Res. 848, 26–34 (1999)CrossRefGoogle Scholar
  24. 24.
    Taghert, P.H.: FMRFamide neuropeptides and neuropeptide-associated enzymes in Drosophila. Microsc. Res. Tech. 45, 80–95 (1999)CrossRefGoogle Scholar
  25. 25.
    Dockray, G.J.: The expanding family of -RFamide peptides and their effects on feeding behaviour. Exp. Physiol. 89, 229–235 (2004)CrossRefGoogle Scholar
  26. 26.
    Chung, J.S., Zmora, N.: Functional studies of crustacean hyperglycemic hormones (CHHs) of the blue crab, Callinectes sapidus – the expression and release of CHH in eyestalk and pericardial organ in response to environmental stress. FEBS J. 275, 693–704 (2008)CrossRefGoogle Scholar
  27. 27.
    De Martinez Gaspar Martins, C., Bianchini, A.: Metallothionein-like proteins in the blue crab Callinectes sapidus: effect of water salinity and ions. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 152(366–371), (2009)Google Scholar
  28. 28.
    Chung, J.S., Zmora, N., Katayama, H., Tsutsui, N.: Crustacean hyperglycemic hormone (CHH neuropeptidesfamily: functions, titer, and binding to target tissues. Gen. Comp. Endocrinol. 166, 447–454 (2009)CrossRefGoogle Scholar
  29. 29.
    Dillaman, R., Hequembourg, S., Gay, M.: Early pattern of calcification in the dorsal carapace of the blue crab, Callinectes sapidus. J. Morphol. 263, 356–374 (2005)CrossRefGoogle Scholar
  30. 30.
    Brian, J.V., Fernandes, T., Ladle, R.J., Todd, P.A.: Patterns of morphological and genetic variability in UK populations of the shore crab, Carcinus maenas Linnaeus, 1758 (Crustacea : Decapoda : Brachyura). J. Exp. Mar. Biol. Ecol. 329, 47–54 (2006)CrossRefGoogle Scholar
  31. 31.
    Ma, M.M., Bors, E.K., Dickinson, E.S., Kwiatkowski, M.A., Sousa, G.L., Henry, R.P., Smith, C.M., Towle, D.W., Christie, A.E., Li, L.J.: Characterization of the Carcinus maenas neuropeptidome by mass spectrometry and functional genomics. Gen. Comp. Endocr. 161, 320–334 (2009)CrossRefGoogle Scholar
  32. 32.
    Wang, J., Zhang, Y., Xiang, F., Zhang, Z., Li, L.: Combining capillary electrophoresis matrix-assisted laser desorption/ionization mass spectrometry and stable isotopic labeling techniques for comparative crustacean peptidomics. J. Chromatogr. A. 1217, 4463–4470 (2010)CrossRefGoogle Scholar
  33. 33.
    Saver, M.A., Wilkens, J.L., Syed, N.I.: In situ and in vitro identification and characterization of cardiac ganglion neurons in the crab, Carcinus maenas. J. Neurophysiol. 81, 2964–2976 (1999)CrossRefGoogle Scholar
  34. 34.
    Ma, M., Szabo, T.M., Jia, C., Marder, E., Li, L.: Mass spectrometric characterization and physiological actions of novel crustacean C-type allatostatins. Peptides. 30, 1660–1668 (2009)CrossRefGoogle Scholar
  35. 35.
    Schulz, D.J., Goaillard, J.M., Marder, E.E.: Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. Proc. Natl. Acad. Sci. USA. 104, 13187–13191 (2007)CrossRefGoogle Scholar
  36. 36.
    Kirby, M.S., Nusbaum, M.P.: Central nervous system projections to and from the commissural ganglion of the crab Cancer borealis. Cell Tissue Res. 328, 625–637 (2007)CrossRefGoogle Scholar
  37. 37.
    Kutz, K.K., Schmidt, J.J., Li, L.: In situ tissue analysis of neuropeptides by MALDI FTMS in-cell accumulation. Anal. Chem. 76, 5630–5640 (2004)CrossRefGoogle Scholar
  38. 38.
    DeKeyser, S.S., Kutz-Naber, K.K., Schmidt, J.J., Barrett-Wilt, G.A., Li, L.: Imaging mass spectrometry of neuropeptides in decapod crustacean neuronal tissues. J. Proteome Res. 6, 1782–1791 (2007)CrossRefGoogle Scholar
  39. 39.
    Chen, R., Hui, L., Cape, S.S., Wang, J., Li, L.: Comparative neuropeptidomic analysis of food intake via a multi-faceted mass spectrometric approach. ACS Chem. Neurosci. 1, 204–214 (2010)CrossRefGoogle Scholar
  40. 40.
    Stangier, J., Hilbich, C., Burdzik, S., Keller, R.: Orcokinin: a novel myotropic peptide from the nervous system of the crayfish. Orconectes limosus. Peptides. 13, 859–864 (1992)Google Scholar
  41. 41.
    Li, L., Pulver, S.R., Kelley, W.P., Thirumalai, V., Sweedler, J.V., Marder, E.: Orcokinin peptides in developing and adult crustacean stomatogastric nervous systems and pericardial organs. J. Comp. Neurol. 444, 227–244 (2002)CrossRefGoogle Scholar
  42. 42.
    Bechtold, D.A., Luckman, S.M.: The role of RFamide peptides in feeding. J. Endocrinol. 192, 3–15 (2007)CrossRefGoogle Scholar
  43. 43.
    Vilim, F.S., Sasaki, K., Rybak, J., Alexeeva, V., Cropper, E.C., Jing, J., Orekhova, I.V., Brezina, V., Price, D., Romanova, E.V., Rubakhin, S.S., Hatcher, N., Sweedler, J.V., Weiss, K.R.: Distinct mechanisms produce functionally complementary actions of neuropeptides that are structurally related but derived from different precursors. J. Neurosci. 30, 131–147 (2010)CrossRefGoogle Scholar
  44. 44.
    Bungart, D., Hilbich, C., Dircksen, H., Keller, R.: Occurrence of analogues of the myotropic neuropeptide orcokinin in the shore crab, Carcinus maenas: evidence for a novel neuropeptide family. Peptides. 16, 67–72 (1995)CrossRefGoogle Scholar
  45. 45.
    Huybrechts, J., Nusbaum, M.P., Bosch, L.V., Baggerman, G., De Loof, A., Schoofs, L.: Neuropeptidomic analysis of the brain and thoracic ganglion from the Jonah crab, Cancer borealis. Biochem. Biophys. Res. Commun. 308, 535–544 (2003)CrossRefGoogle Scholar
  46. 46.
    Pascual, N., Castresana, J., Valero, M.L., Andreu, D., Belles, X.: Orcokinins in insects and other invertebrates. Insect Biochem. Mol. Biol. 34, 1141–1146 (2004)CrossRefGoogle Scholar
  47. 47.
    Dickinson, P.S., Stemmler, E.A., Barton, E.E., Cashman, C.R., Gardner, N.P., Rus, S., Brennan, H.R., McClintock, T.S., Christie, A.E.: Molecular, mass spectral, and physiological analyses of orcokinins and orcokinin precursor-related peptides in the lobster Homarus americanus and the crayfish Procambarus clarkii. Peptides. 30, 297–317 (2009)CrossRefGoogle Scholar
  48. 48.
    Kavaliers, M., Hirst, M., Mathers, A.: Inhibitory influences of FMRFamide on morphine- and deprivation-induced feeding. Neuroendocrinology. 40, 533–535 (1985)CrossRefGoogle Scholar
  49. 49.
    Li, L., Kelley, W.P., Billimoria, C.P., Christie, A.E., Pulver, S.R., Sweedler, J.V., Marder, E.: Mass spectrometric investigation of the neuropeptide complement and release in the pericardial organs of the crab, Cancer borealis. J. Neurochem. 87, 642–656 (2003)CrossRefGoogle Scholar
  50. 50.
    Fu, Q., Tang, L.S., Marder, E., Li, L.: Mass spectrometric characterization and physiological actions of VPNDWAHFRGSWamide, a novel B type allatostatin in the crab, Cancer borealis. J. Neurochem. 101, 1099–1107 (2007)CrossRefGoogle Scholar
  51. 51.
    Hsieh, Y., Chen, J., Korfmacher, W.A.: Mapping pharmaceuticals in tissues using MALDI imaging mass spectrometry. J. Pharmacol. Toxicol. Methods. 55, 193–200 (2007)CrossRefGoogle Scholar
  52. 52.
    Cornett, D.S., Reyzer, M.L., Chaurand, P., Caprioli, R.M.: MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat. Methods. 4, 828–833 (2007)CrossRefGoogle Scholar
  53. 53.
    Chaurand, P., Norris, J.L., Cornett, D.S., Mobley, J.A., Caprioli, R.M.: New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J. Proteome Res. 5, 2889–2900 (2006)CrossRefGoogle Scholar
  54. 54.
    Shariatgorji, M., Nilsson, A., Goodwin, R.J.A., Kallback, P., Schintu, N., Zhang, X.Q., Crossman, A.R., Bezard, E., Svenningsson, P., Andren, P.E.: Direct targeted quantitative molecular imaging of neurotransmitters in brain tissue sections. Neuron. 84, 697–707 (2014)CrossRefGoogle Scholar
  55. 55.
    Satake, H., Kawada, T., Nomoto, K., Minakata, H.: Insight into tachykinin-related peptides, their receptors, and invertebrate tachykinins: a review. Zoolog. Sci. 20, 533–549 (2003)CrossRefGoogle Scholar
  56. 56.
    Severini, C., Improta, G., Falconieri-Erspamer, G., Salvadori, S., Erspamer, V.: The tachykinin peptide family. Pharmacol. Rev. 54, 285–322 (2002)CrossRefGoogle Scholar
  57. 57.
    Otsuka, M., Yoshioka, K.: Neurotransmitter functions of mammalian tachykinins. Physiol Rev. 73, 229–308 (1993)CrossRefGoogle Scholar
  58. 58.
    Kalra, S.P., Dube, M.G., Kalra, P.S.: Neuropeptide K (NPK) suppresses copulatory behavior in male rats. Physiol. Behav. 49, 1297–1300 (1991)CrossRefGoogle Scholar
  59. 59.
    Kalra, S.P., Sahu, A., Dube, G., Kalra, P.S.: Effects of various tachykinins on pituitary LH secretion, feeding, and sexual behavior in the rat. Ann. NY Acad. Sci. 632, 332–338 (1991)CrossRefGoogle Scholar
  60. 60.
    Peyon, P., Saied, H., Lin, X., Peter, R.E.: Preprotachykinin gene expression in goldfish brain: sexual, seasonal, and postprandial variations. Peptides. 21, 225–231 (2000)CrossRefGoogle Scholar
  61. 61.
    Brockmann, A., Annangudi, S.P., Richmond, T.A., Ament, S.A., Xie, F., Southey, B.R., Rodriguez-Zas, S.R., Robinson, G.E., Sweedler, J.V.: Quantitative peptidomics reveal brain peptide signatures of behavior. Proc. Natl. Acad. Sci. USA. 106, 2383–2388 (2009)CrossRefGoogle Scholar
  62. 62.
    Pascual, N., Maestro, J.L., Chiva, C., Andreu, D., Belles, X.: Identification of a tachykinin-related peptide with orexigenic properties in the German cockroach. Peptides. 29, 386–392 (2008)CrossRefGoogle Scholar
  63. 63.
    Tachibana, T., Khan, M.S., Matsuda, K., Ueda, H., Cline, M.A.: Central administration of substance P inhibits feeding behavior in chicks. Horm. Behav. 57, 203–208 (2010)CrossRefGoogle Scholar
  64. 64.
    Winther, A.M., Acebes, A., Ferrus, A.: Tachykinin-related peptides modulate odor perception and locomotor activity in Drosophila. Mol. Cell Neurosci. 31, 399–406 (2006)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Yuzhuo Zhang
    • 1
  • Kellen DeLaney
    • 2
  • Limei Hui
    • 1
  • Junhua Wang
    • 2
  • Robert M. Sturm
    • 1
  • Lingjun Li
    • 1
    • 2
  1. 1.School of PharmacyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of ChemistryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations