Isotopic Exchange HPLC-HRMS/MS Applied to Cyclic Proanthocyanidins in Wine and Cranberries

  • Edoardo Longo
  • Fabrizio Rossetti
  • Matteo Scampicchio
  • Emanuele Boselli
Research Article


Cyclic B-type proanthocyanidins in red wines and grapes have been discovered recently. However, proanthocyanidins of a different chemical structure (non-cyclic A-type proanthocyanidins) already known to be present in cranberries and wine possess an identical theoretical mass. As a matter of fact, the retention times and the MS/MS fragmentations found for the proposed novel cyclic B-type tetrameric proanthocyanidin in red wine and the known tetrameric proanthocyanidin in a cranberry extract are herein shown to be identical. Thus, hydrogen/deuterium (H/D) exchange was applied to HPLC-HRMS/MS to confirm the actual chemical structure of the new oligomeric proanthocyanidins. The comparison of the results in water and deuterium oxide and between wine and cranberry extract indicates that the cyclic B-type tetrameric proanthocyanidin is the actual constituent of the recently proposed novel tetrameric species ([C60H49O24]+, m/z 1153.2608). Surprisingly, the same compound was also identified as the main tetrameric proanthocyanidin in cranberries. Finally, a totally new cyclic B-type hexameric proanthocyanidin ([C90H73O36]+, m/z 1729.3876) belonging to this novel class was identified for the first time in red wine.

Graphical Abstract


Cyclic proanthocyanidins Hydrogen/deuterium exchange High-resolution mass spectrometry Wine Cranberries Cyclic B-type hexameric proanthocyanidin 



The authors thank Kellerei Bozen (Bolzano, Italy) for providing the samples of Lagrein wine used for the analysis. The authors thank the Province of Bolzano (Italy) (Landesregierung mittels Beschluss Nr. 1472, 07.10.2013) for their financial support.


  1. 1.
    Bordiga, M., Travaglia, F., Locatelli, M., Coïsson, J.D., Arlorio, M.: Characterization of polymeric skin and seed proanthocyanidins during ripening in six Vitis vinifera L. cv. Food Chem. 127, 180–187 (2011)CrossRefGoogle Scholar
  2. 2.
    He, S., Sun, C.: Pan, Y: Red wine polyphenols for cancer prevention. Int. J. Mol. Sci. 9, 842–853 (2008)CrossRefGoogle Scholar
  3. 3.
    Souquet, J., Cheyner, V., Brossaud, F., Moutounet, M.: Polymeric proanthocynidins from grape skins. Phytochemistry. 43, 509–512 (1996)CrossRefGoogle Scholar
  4. 4.
    Castañeda-Ovando, A., Pacheco-Hernández, M., de Lourdes Pérez-Hernández, M.E., Rodríguez, J.A., Galán-Vidal, C.A.: Chemical studies of anthocyanins: a review. Food Chem. 113, 859–871 (2009)CrossRefGoogle Scholar
  5. 5.
    Jourdes, M., Zeng, L., Pons-Marcadé, P., Rivero Canosa, M., Richard, T., Teissèdre, P.-L.: A new procyanidin tetramer with unusual macrocyclic skeleton from grape and wine. Book of Abstracts of 39th World Vine and Wine Congress - Theme 2 Oenology, pp. 432/433, 24–28 October. Bento Gonçalves, Brazil (2016)Google Scholar
  6. 6.
    Jouin, A., Rossetti, F., Teissèdre, P.-L., Jourdes, M.: Evaluation of crown procyanidins contents in different variety and their accumulation kinetic during grape maturation. Book of Abstracts of 10th In Vino Analytica Scientia (IVAS) Symposium, 17–20 July, pp. 160, Salamanca, Spain (2017)Google Scholar
  7. 7.
    Li, H.L., Deinzer, M.L.: The mass spectral analysis of isolated hops A-type proanthocyanidins by electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 43, 1353–1363 (2008)CrossRefGoogle Scholar
  8. 8.
    Gu, L., Kelm, M.A., Hammerstone, J.F., Beecher, G., Holden, J., Haytowitz, D., Prior, R.L.: Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J. Agric. Food Chem. 51, 7513–7521 (2003)CrossRefGoogle Scholar
  9. 9.
    Vivas de Gaulejac, N., Vivas, N., Absalon, C., Nonier, M.F.: Merlot Noir and Cabernet Sauvignon. J. Int. des Sci. de la Vigne et du Vin 35, 51–56 (2001)Google Scholar
  10. 10.
    Prior, R.L., Lazarus, S.A., Cao, G., Muccitelli, H., Hammerstone, J.F.: Identification of procyanidins and anthocyanidins in blueberries and cranberries (Vaccinium spp.) using high performance liquid chromatography/mass spectrometry. J. Agric. Food Chem. 49, 1270–1276 (2001)CrossRefGoogle Scholar
  11. 11.
    Esatbeyoglu, T., Jaschok-Kentner, B., Wray, V., Winterhalter, P.: Structure elucidation of procyanidin oligomers by low-temperature 1H NMR spectroscopy. J. Agric. Food Chem. 59, 62–69 (2011)CrossRefGoogle Scholar
  12. 12.
    Qi, B.-L., Liu, P., Wang, Q.-Y., Cai, W.-J., Yuan, B.-F., Feng, Y.-Q.: Derivatization for liquid chromatography-mass spectrometry. TrAC Trends Anal. Chem. 59, 121–132 (2014)CrossRefGoogle Scholar
  13. 13.
    Quirke, J.M.E., Adams, C.L., Van Berkel, G.J.: Chemical derivatization for electrospray ionization mass spectrometry. 1. Alkyl halides, alcohols, phenols, thiols, and amines. Anal. Chem. 66, 1302–1315 (1994)CrossRefGoogle Scholar
  14. 14.
    Xu, F., Zou, L., Zhang, Z., Ong, C.N.: Enhancement of the capabilities of liquid chromatography-mass spectrometry with derivatization: general principles and applications. Mass Spectrom. Rev. 30, 1143–1172 (2011)CrossRefGoogle Scholar
  15. 15.
    Lam, W., Ramanathan, R.: In electrospray ionization source hydrogen/deuterium exchange LC-MS and LC-MS/MS for characterization of metabolites. J. Am. Soc. Mass Spectrom. 13, 345–353 (2002)CrossRefGoogle Scholar
  16. 16.
    Nemes, P., Goyal, S., Vertes, A.: Conformational and noncovalent complexation changes in proteins during electrospray ionization. Anal. Chem. 80, 387–395 (2008)CrossRefGoogle Scholar
  17. 17.
    Carlson, E.E., Cravatt, B.F.: Chemoselective probes for metabolite enrichment and profiling. Nat. Methods. 4(5), 429–435 (2007)Google Scholar
  18. 18.
    Liu, D.Q., Hop, C.E.C.A.: Strategies for characterization of drug metabolites using liquid chromatography-tandem mass spectrometry in conjunction with chemical derivatization and on-line H/D exchange approaches. J. Pharm. Biomed. Anal. 37, 1–18 (2005)CrossRefGoogle Scholar
  19. 19.
    Olsen, M.A., Cummings, P.G., Kennedy-Gabb, S., Wagner, B.M., Nicol, G.R., Munson, B.: The use of deuterium oxide as a mobile phase for structural elucidation by HPLC/UV/ ESI/MS. Anal. Chem. 72, 5070–5078 (2000)CrossRefGoogle Scholar
  20. 20.
    Yan, X., Maier, C.S.: Hydrogen/deuterium exchange mass spectrometry. In: Lipton, M., Paša-Tolic, L. (eds.) Mass Ssectrometry of proteins and peptides, p. 255. Humana Press, Springer, New York (2009)CrossRefGoogle Scholar
  21. 21.
    Bakker, J., Bridle, P., Honda, T., Kuwano, H., Saito, N., Terahara, N., Timberlake, C.F.: Identification of an antocyanin occurring in some red wines. Phytochemistry. 44, 1375–1382 (1997)CrossRefGoogle Scholar
  22. 22.
    Savini, S., Loizzo, M.R., Tundis, R., Mozzon, M., Foligni, R., Longo, E., Morozova, K., Scampicchio, M., Martin-Vertedor, D., Boselli, E.: Fresh refrigerated Tuber melanosporum truffle: effect of the storage conditions on the antioxidant profile, antioxidant activity, and volatile profile. Eur. Food Res. Technol. 1–9 (2017)Google Scholar
  23. 23.
    Zhang, S., Zhu, M.J.: Characterization of polyphenolics in grape pomace extracts using ESI Q-TOF MS/MS. J. Food Sci. Nutr. 1, 1–10 (2015)Google Scholar
  24. 24.
    Sui, Y., Li, X., Li, S., Xie, B., Sun, Z.: Characterization and preparation of oligomeric procyanidins from Litchi chinensis pericarp. Fitoterapia. 112, 168–174 (2016)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Faculty of Science and TechnologyFree University of Bozen-BolzanoBolzanoItaly
  2. 2.Department of Agricultural, Food, and Environmental SciencesUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations