Ultraviolet, Infrared, and High-Low Energy Photodissociation of Post-Translationally Modified Peptides

  • Mohammad A. Halim
  • Luke MacAleese
  • Jérôme Lemoine
  • Rodolphe Antoine
  • Philippe Dugourd
  • Marion Girod
Focus: 32nd Asilomar Conference, Novel Instrumentation in MS and Ion Mobility: Research Article

Abstract

Mass spectrometry-based methods have made significant progress in characterizing post-translational modifications in peptides and proteins; however, certain aspects regarding fragmentation methods must still be improved. A good technique is expected to provide excellent sequence information, locate PTM sites, and retain the labile PTM groups. To address these issues, we investigate 10.6 μm IRMPD, 213 nm UVPD, and combined UV and IR photodissociation, known as HiLoPD (high-low photodissociation), for phospho-, sulfo-, and glyco-peptide cations. IRMPD shows excellent backbone fragmentation and produces equal numbers of N- and C-terminal ions. The results reveal that 213 nm UVPD and HiLoPD methods can provide diverse backbone fragmentation producing a/x, b/y, and c/z ions with excellent sequence coverage, locate PTM sites, and offer reasonable retention efficiency for phospho- and glyco-peptides. Excellent sequence coverage is achieved for sulfo-peptides and the position of the SO3 group can be pinpointed; however, widespread SO3 losses are detected irrespective of the methods used herein. Based on the overall performance achieved, we believe that 213 nm UVPD and HiLoPD can serve as alternative options to collision activation and electron transfer dissociations for phospho- and glyco-proteomics.

Graphical Abstract

Keywords

Photofragmentation Post-translational modifications Fragmentation method UVPD IRMPD 

Notes

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013 grant agreement no. 320659).

Supplementary material

13361_2017_1794_MOESM1_ESM.docx (61 kb)
ESM 1 (DOCX 61 kb)

References

  1. 1.
    Mann, M., Jensen, O.N.: Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003)CrossRefGoogle Scholar
  2. 2.
    Zhao, Y., Jensen, O.N.: Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics. 9, 4632–4641 (2009)CrossRefGoogle Scholar
  3. 3.
    Macek, B., Mann, M., Olsen, J.: V: Global and site-specific quantitative phosphoproteomics: principles and applications. Annu. Rev. Pharmacol. Toxicol. 49, 199–221 (2009)CrossRefGoogle Scholar
  4. 4.
    Önnerfjord, P., Heathfield, T.F., Heinegård, D.: Identification of tyrosine sulfation in extracellular leucine-rich repeat proteins using mass spectrometry. J. Biol. Chem. 279, 26–33 (2004)CrossRefGoogle Scholar
  5. 5.
    Christiansen, M.N., Kolarich, D., Nevalainen, H., Packer, N.H., Jensen, P.H.: Challenges of determining o-glycopeptide heterogeneity: a fungal glucanase model system. Anal. Chem. 82, 3500–3509 (2010)CrossRefGoogle Scholar
  6. 6.
    Cohen, P.: The origins of protein phosphorylation. Nat. Cell. Biol. 4, E127–E130 (2002)CrossRefGoogle Scholar
  7. 7.
    Ubersax, J.A., Ferrell Jr., J.E.: Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell. Biol. 8, 530–541 (2007)CrossRefGoogle Scholar
  8. 8.
    Pearce, L.R., Komander, D., Alessi, D.R.: The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell. Biol. 11, 9–22 (2010)CrossRefGoogle Scholar
  9. 9.
    Bettelheim, F.R.: Tyrosine-O-sulfate in a peptide from fibrinogen. J. Am. Chem. Soc. 76, 2838–2839 (1954)CrossRefGoogle Scholar
  10. 10.
    Moore, K.L.: Protein tyrosine sulfation: a critical posttranslation modification in plants and animals. Proc. Natl. Acad. Sci. 106, 14741–14742 (2009)CrossRefGoogle Scholar
  11. 11.
    Yu, Y., Hoffhines, A.J., Moore, K.L., Leary, J.A.: Determination of the sites of tyrosine O-sulfation in peptides and proteins. Nat. Methods. 4, 583–588 (2007)CrossRefGoogle Scholar
  12. 12.
    Steen, P. Van den, Rudd, P.M., Dwek, R.A., Opdenakker, G.: Concepts and principles of O-linked glycosylation. Crit. Rev. Biochem. Mol. Biol. 33, 151–208 (1998)Google Scholar
  13. 13.
    Gill, D.J., Clausen, H., Bard, F.: Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell. Biol. 21, 149–158 (2017)CrossRefGoogle Scholar
  14. 14.
    Kreisman, L.S.C., Cobb, B.A.: Infection, inflammation, and host carbohydrates: a glyco-evasion hypothesis. Glycobiology. 22, 1019–1030 (2012)CrossRefGoogle Scholar
  15. 15.
    Pinho, S.S., Reis, C.A.: Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer. 15, 540–555 (2015)CrossRefGoogle Scholar
  16. 16.
    Freeze, H.H., Eklund, E.A., Ng, B.G., Patterson, M.C.: Neurological aspects of human glycosylation disorders. Annu. Rev. Neurosci. 38, 105–125 (2015)CrossRefGoogle Scholar
  17. 17.
    Schedin-Weiss, S., Winblad, B., Tjernberg, L.O.: The role of protein glycosylation in Alzheimer disease. FEBS J. 281, 46–62 (2014)CrossRefGoogle Scholar
  18. 18.
    Hwang, H., Zhang, J., Chung, K.A., Leverenz, J.B., Zabetian, C.P., Peskind, E.R., Jankovic, J., Su, Z., Hancock, A.M., Pan, C., Montine, T.J., Pan, S., Nutt, J., Albin, R., Gearing, M., Beyer, R.P., Shi, M., Zhang, J.: Glycoproteomics in neurodegenerative diseases. Mass Spectrom. Rev. 29, 79–125 (2010)Google Scholar
  19. 19.
    Pan, S., Chen, R., Aebersold, R., Brentnall, T.A.: Mass spectrometry based glycoproteomics—from a proteomics perspective. Mol. Cell. Proteom. 10, (2011)Google Scholar
  20. 20.
    Masselon, C., Anderson, G.A., Harkewicz, R., Bruce, J.E., Pasa-Tolic, L., Smith, R.D.: Accurate mass multiplexed tandem mass spectrometry for high-throughput polypeptide identification from mixtures. Anal. Chem. 72, 1918–1924 (2000)CrossRefGoogle Scholar
  21. 21.
    Pandey, A., Mann, M.: Proteomics to study genes and genomes. Nature. 405, 837–846 (2000)CrossRefGoogle Scholar
  22. 22.
    Crowe, M.C., Brodbelt, J.S.: Infrared multiphoton dissociation (IRMPD) and collisionally activated dissociationof peptides in a quadrupole ion trapwith selective IRMPD of phosphopeptides. J. Am. Soc. Mass Spectrom. 15, 1581–1592 (2004)CrossRefGoogle Scholar
  23. 23.
    Zolodz, M.D., Wood, K.V.: Detection of tyrosine phosphorylated peptides via skimmer collision-induced dissociation/ion trap mass spectrometry. J. Mass Spectrom. 38, 257–264 (2003)CrossRefGoogle Scholar
  24. 24.
    Affolter, M., Watts, J.D., Krebs, D.L., Aebersold, R.: Evaluation of two-dimensional phosphopeptide maps by electrospray ionization mass spectrometry of recovered peptides. Anal. Biochem. 223, 74–81 (1994)CrossRefGoogle Scholar
  25. 25.
    Cook, S.L., Jackson, G.P.: Metastable atom-activated dissociation mass spectrometry of phosphorylated and sulfonated peptides in negative ion mode. J. Am. Soc. Mass Spectrom. 22, 1088–1099 (2011)CrossRefGoogle Scholar
  26. 26.
    Edelson-Averbukh, M., Shevchenko, A., Pipkorn, R., Lehmann, W.D.: Discrimination between peptide O-sulfo- and O-phosphotyrosine residues by negative ion mode electrospray tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 22, 2256–2268 (2011)CrossRefGoogle Scholar
  27. 27.
    Cotham, V.C., McGee, W.M., Brodbelt, J.S.: Modulation of phosphopeptide fragmentation via dual spray ion/ion reactions using a sulfonate-incorporating reagent. Anal. Chem. 88, 8158–8165 (2016)CrossRefGoogle Scholar
  28. 28.
    Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998)CrossRefGoogle Scholar
  29. 29.
    Syka, J.E.P., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. USA. 101, 9528–9533 (2004)CrossRefGoogle Scholar
  30. 30.
    Zhurov, K.O., Fornelli, L., Wodrich, M.D., Laskay, U.A., Tsybin, Y.O.: Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis. Chem. Soc. Rev. 42, 5014–5030 (2013)CrossRefGoogle Scholar
  31. 31.
    Coon, J.J.: Collision or electron? Protein sequence analysis on the 21st century. Anal. Chem. 81, 3208–3215 (2009)CrossRefGoogle Scholar
  32. 32.
    Shi, S.D.H., Hemling, M.E., Carr, S.A., Horn, D.M., Lindh, I., McLafferty, F.W.: Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry. Anal. Chem. 73, 19–22 (2000)CrossRefGoogle Scholar
  33. 33.
    Good, D.M., Wirtala, M., McAlister, G.C., Coon, J.J.: Performance characteristics of electron transfer dissociation mass spectrometry. Mol. Cell. Proteom. 6, 1942–1951 (2007)CrossRefGoogle Scholar
  34. 34.
    Frese, C.K., Altelaar, A.F.M., Hennrich, M.L., Nolting, D., Zeller, M., Griep-Raming, J., Heck, A.J.R., Mohammed, S.: Improved peptide identification by targeted fragmentation using CID, HCD, and ETD on an LTQ-Orbitrap Velos. J. Proteome Res. 10, 2377–2388 (2011)CrossRefGoogle Scholar
  35. 35.
    Asakawa, D., Takeuchi, T., Yamashita, A., Wada, Y.: Influence of metal–peptide complexation on fragmentation and inter-fragment hydrogen migration in electron transfer dissociation. J. Am. Soc. Mass Spectrom. 25, 1029–1039 (2014)CrossRefGoogle Scholar
  36. 36.
    Asakawa, D., Osaka, I.: High-confidence sequencing of phosphopeptides by electron transfer dissociation mass spectrometry using dinuclear zinc(II) complex. Anal. Chem. 88, 12393–12402 (2016)CrossRefGoogle Scholar
  37. 37.
    Loo, J.A., Loo, R.R.O., Light, K.J., Edmonds, C.G., Smith, R.D.: Multiply charged negative ions by electrospray ionization of polypeptides and proteins. Anal. Chem. 64, 81–88 (1992)CrossRefGoogle Scholar
  38. 38.
    Huzarska, M., Ugalde, I., Kaplan, D.A., Hartmer, R., Easterling, M.L., Polfer, N.C.: Negative electron transfer dissociation of deprotonated phosphopeptide anions: choice of radical cation reagent and competition between electron and proton transfer. Anal. Chem. 82, 2873–2878 (2010)CrossRefGoogle Scholar
  39. 39.
    Hersberger, K.E., Håkansson, K.: Characterization of O-sulfopeptides by negative ion mode tandem mass spectrometry: superior performance of negative ion electron capture dissociation. Anal. Chem. 84, 6370–6377 (2012)CrossRefGoogle Scholar
  40. 40.
    Madsen, J.A., Xu, H., Robinson, M.R., Horton, A.P., Shaw, J.B., Giles, D.K., Kaoud, T.S., Dalby, K.N., Trent, M.S., Brodbelt, J.S.: High-throughput database search and large-scale negative polarity liquid chromatography-tandem mass spectrometry with ultraviolet photodissociation for complex proteomic samples. Mol. Cell. Proteom. 12, 2604–2614 (2013)CrossRefGoogle Scholar
  41. 41.
    Halim, M., Girod, M., MacAleese, L., Lemoine, J., Antoine, R., Dugourd, P.: 213 nm ultraviolet photodissociation on peptide anions: radical-directed fragmentation patterns. J. Am. Soc. Mass Spctrom. 27, 474–486 (2016)CrossRefGoogle Scholar
  42. 42.
    Riley, N.M., Rush, M.J.P., Rose, C.M., Richards, A.L., Kwiecien, N.W., Bailey, D.J., Hebert, A.S., Westphall, M.S., Coon, J.J.: The negative mode proteome with activated ion negative electron transfer dissociation (AI-NETD). Mol. Cell. Proteom. 14, 2644–2660 (2015)CrossRefGoogle Scholar
  43. 43.
    Riley, N.M., Bern, M., Westphall, M.S., Coon, J.J.: Full-featured search algorithm for negative electron-transfer dissociation. J. Proteome Res. 15, 2768–2776 (2016)CrossRefGoogle Scholar
  44. 44.
    Bowie, J.H., Brinkworth, C.S., Dua, S.: Collision-induced fragmentations of the (M-H)− parent anions of underivatized peptides: an aid to structure determination and some unusual negative ion cleavages. Mass Spectrom. Rev. 21, 87–107 (2002)CrossRefGoogle Scholar
  45. 45.
    Shaw, J.B., Kaplan, D.A., Brodbelt, J.S.: Activated ion negative electron transfer dissociation of multiply charged peptide anions. Anal. Chem. 85, 4721–4728 (2013)CrossRefGoogle Scholar
  46. 46.
    Kim, T.-Y., Reilly, J.P.: Time-resolved observation of product ions generated by 157 nm photodissociation of singly protonated phosphopeptides. J. Am. Soc. Mass Spectrom. 20, 2334–2341 (2009)CrossRefGoogle Scholar
  47. 47.
    Robinson, M.R., Moore, K.L., Brodbelt, J.S.: Direct identification of tyrosine sulfation by using ultraviolet photodissociation mass spectrometry. J. Am. Soc. Mass Spectrom. 25, 1461–1471 (2014)CrossRefGoogle Scholar
  48. 48.
    Madsen, J.A., Kaoud, T.S., Dalby, K.N., Brodbelt, J.S.: 193-nm Photodissociation of singly and multiply charged peptide anions for acidic proteome characterization. Proteomics. 11, 1329–1334 (2011)CrossRefGoogle Scholar
  49. 49.
    Fort, K.L., Dyachenko, A., Potel, C.M., Corradini, E., Marino, F., Barendregt, A., Makarov, A.A., Scheltema, R.A., Heck, A.J.R.: Implementation of ultraviolet photodissociation on a benchtop Q Exactive mass spectrometer and its application to phosphoproteomics. Anal. Chem. 88, 2303–2310 (2016)CrossRefGoogle Scholar
  50. 50.
    Robinson, M.R., Taliaferro, J.M., Dalby, K.N., Brodbelt, J.S.: 193 nm Ultraviolet photodissociation mass spectrometry for phosphopeptide characterization in the positive and negative ion modes. J. Proteome Res. 15, 2739–2748 (2016)CrossRefGoogle Scholar
  51. 51.
    Lemoine, J., Tabarin, T., Antoine, R., Broyer, M., Dugourd, P.: UV photodissociation of phospho-seryl-containing peptides: Laser stabilization of the phospho-seryl bond with multistage mass spectrometry. Rapid Commun. Mass Spectrom. 20, 507–511 (2006)CrossRefGoogle Scholar
  52. 52.
    Park, S., Ahn, W.-K., Lee, S., Han, S.Y., Rhee, B.K., Oh, H.: Bin: Ultraviolet photodissociation at 266 nm of phosphorylated peptide cations. Rapid Commun. Mass Spectrom. 23, 3609–3620 (2009)CrossRefGoogle Scholar
  53. 53.
    Antoine, R., Joly, L., Tabarin, T., Broyer, M., Dugourd, P., Lemoine, J.: Photo-induced formation of radical anion peptides. Electron photodetachment dissociation experiments. Rapid Commun. Mass Spectrom. 21, 265–268 (2007)CrossRefGoogle Scholar
  54. 54.
    Wilson, J.J., Brodbelt, J.S.: Infrared multiphoton dissociation for enhanced de novo sequence interpretation of N-terminal sulfonated peptides in a quadrupole ion trap. Anal. Chem. 78, 6855–6862 (2006)CrossRefGoogle Scholar
  55. 55.
    Pikulski, M., Hargrove, A., Shabbir, S.H., Anslyn, E.V., Brodbelt, J.S.: Sequencing and characterization of oligosaccharides using infrared multiphoton dissociation and boronic acid derivatization in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 18, 2094–2106 (2007)CrossRefGoogle Scholar
  56. 56.
    Li, B., Russell, S.C., Zhang, J., Hedrick, J.L., Lebrilla, C.B.: Structure determination by MALDI-IRMPD mass spectrometry and exoglycosidase digestions of O-linked oligosaccharides from Xenopus borealis egg jelly. Glycobiology. 21, 877–894 (2011)Google Scholar
  57. 57.
    Brodbelt, J.S., Wilson, J.J.: Infrared multiphoton dissociation in quadrupole ion traps. Mass Spectrom. Rev. 28, 390–424 (2009)CrossRefGoogle Scholar
  58. 58.
    Zhou, W., Hakansson, K.: Structural characterization of carbohydrates by Fourier transform tandem mass spectrometry. Curr. Proteom. 8, 297–308 (2011)CrossRefGoogle Scholar
  59. 59.
    Girod, M., Sanader, Z., Vojkovic, M., Antoine, R., MacAleese, L., Lemoine, J., Bonacic-Koutecky, V., Dugourd, P.: UV photodissociation of proline-containing peptide ions: insights from molecular dynamics. J. Am. Soc. Mass Spctrom. 26, 432–443 (2014)CrossRefGoogle Scholar
  60. 60.
    Halim, M.A., Girod, M., MacAleese, L., Lemoine, J., Antoine, R., Dugourd, P.: Combined infrared multiphoton dissociation with ultraviolet photodissociation for ubiquitin characterization. J. Am. Soc. Mass Spectrom. 27, 1435–1442 (2016)CrossRefGoogle Scholar
  61. 61.
    Flora, J.W., Muddiman, D.C.: Determination of the relative energies of activation for the dissociation of aromatic versus aliphatic phosphopeptides by ESI-FTICR-MS and IRMPD. J. Am. Soc. Mass Spectrom. 15, 121–127 (2004)CrossRefGoogle Scholar
  62. 62.
    Han, H., Xia, Y., McLuckey, S.A.: Ion trap collisional activation of c and z• ions formed via gas-phase ion/ion electron-transfer dissociation. J. Proteome Res. 6, 3062–3069 (2007)CrossRefGoogle Scholar
  63. 63.
    Antoine, R., Lemoine, J., Dugourd, P.: Electron photodetachment dissociation for structural characterization of synthetic and bio-polymer anions. Mass Spectrom. Rev. 33, 501–522 (2014)CrossRefGoogle Scholar
  64. 64.
    Madsen, J., Cheng, R.R., Kaoud, T.S., Dalby, K., Makarov, D.E., Brodbelt, J.: Charge-site-dependent dissociation of hydrogen-rich radical peptide cations upon vacuum UV photoexcitation. Chem. Eur. J. 18, 5374–5383 (2012)CrossRefGoogle Scholar
  65. 65.
    DeGnore, J., Qin, J.: Fragmentation of phosphopeptides in an ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 9, 1175–1188 (1998)CrossRefGoogle Scholar
  66. 66.
    Tholey, A., Reed, J., Lehmann, W.D.: Electrospray tandem mass spectrometric studies of phosphopeptides and phosphopeptide analogues. J. Mass Spectrom. 34, 117–123 (1999)CrossRefGoogle Scholar
  67. 67.
    Moyer, S.C., VonSeggern, C.E., Cotter, R.J.: Fragmentation of cationized phosphotyrosine containing peptides by atmospheric pressure MALDI/ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 14, 581–592 (2003)CrossRefGoogle Scholar
  68. 68.
    Annan, R.S., Carr, S.A.: Phosphopeptide analysis by matrix-assisted laser desorption time-of-flight mass spectrometry. Anal. Chem. 68, 3413–3421 (1996)CrossRefGoogle Scholar
  69. 69.
    Paciotti, R., Coletti, C., Re, N., Scuderi, D., Chiavarino, B., Fornarini, S., Crestoni, M.E.: Serine O-sulfation probed by IRMPD spectroscopy. Phys. Chem., Chem. Phys. 17, 25891–25904 (2015)CrossRefGoogle Scholar
  70. 70.
    Budnik, B.A., Haselmann, K.F., Zubarev, R.A.: Electron detachment dissociation of peptide di-anions: an electron-hole recombination phenomenon. Chem. Phys. Lett. 342, 299–302 (2001)CrossRefGoogle Scholar
  71. 71.
    Seipert, R.R., Dodds, E.D., Lebrilla, C.B.: Exploiting differential dissociation chemistries of O-linked glycopeptide ions for the localization of mucin-type protein glycosylation. J. Proteome Res. 8, 493–501 (2009)CrossRefGoogle Scholar
  72. 72.
    Zhu, Z., Su, X., Clark, D.F., Go, E.P., Desaire, H.: Characterizing O-linked glycopeptides by electron transfer dissociation: fragmentation rules and applications in data analysis. Anal. Chem. 85, 8403–8411 (2013)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2017

Authors and Affiliations

  1. 1.Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière MatièreLyonFrance
  2. 2.Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS LyonVilleurbanneFrance

Personalised recommendations