Novel Selectivity-Based Forensic Toxicological Validation of a Paper Spray Mass Spectrometry Method for the Quantitative Determination of Eight Amphetamines in Whole Blood

  • Sebastiaan F. Teunissen
  • Patrick W. Fedick
  • Bjorn J. A. Berendsen
  • Michel W. F. Nielen
  • Marcos N. Eberlin
  • R. Graham Cooks
  • Arian C. van Asten
Research Article

Abstract

Paper spray tandem mass spectrometry is used to identify and quantify eight individual amphetamines in whole blood in 1.3 min. The method has been optimized and fully validated according to forensic toxicology guidelines, for the quantification of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxy-N-methylamphetamine (MDMA), 3,4-methylenedioxy-N-ethylamphetamine (MDEA), para-methoxyamphetamine (PMA), para-methoxymethamphetamine (PMMA), and 4-fluoroamphetamine (4-FA). Additionally, a new concept of intrinsic and application-based selectivity is discussed, featuring increased confidence in the power to discriminate the amphetamines from other chemically similar compounds when applying an ambient mass spectrometric method without chromatographic separation. Accuracy was within ±15% and average precision was better than 15%, and better than 20% at the LLOQ. Detection limits between 15 and 50 ng/mL were obtained using only 12 μL of whole blood.

Graphical abstract

Keywords

Forensic toxicology Amphetamines Whole blood Paper spray mass spectrometry Validation Selectivity 

Supplementary material

13361_2017_1790_MOESM1_ESM.docx (382 kb)
ESM 1(DOCX 381 kb)

References

  1. 1.
    Wang, H., Liu, J., Cooks, R.G., Ouyang, Z.: Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew. Chem. Int. Ed. 49, 877–880 (2010)CrossRefGoogle Scholar
  2. 2.
    Manicke, N.E., Bills, B.J., Zhang, C.: Analysis of biofluids by paper spray MS: advances and challenges. Bioanalysis. 8, 589–606 (2016)CrossRefGoogle Scholar
  3. 3.
    Zhang, Z., Cooks, R.G., Ouyang, Z.: Paper spray: a simple and efficient means of analysis of different contaminants in foodstuffs. Analyst. 137, 2556–2558 (2012)CrossRefGoogle Scholar
  4. 4.
    Garrett, R., Rezende, C., Ifa, D.: Coffee origin discrimination by paper spray mass spectrometry and direct coffee spray analysis. Anal. Methods. 5, 5944–5948 (2013)CrossRefGoogle Scholar
  5. 5.
    Wang, Q., Zheng, Y., Zhang, X., Han, X., Wang, T., Zhang, Z.: A silica coated paper substrate: development and its application in paper spray mass spectrometry for rapid analysis of pesticides in milk. Analyst. 140, 8048–8056 (2015)CrossRefGoogle Scholar
  6. 6.
    Deng, J., Yang, Y.: Chemical fingerprint analysis for quality assessment and control of Bansha herbal tea using paper spray mass spectrometry. Anal. Chim. Acta. 785, 82–90 (2013)CrossRefGoogle Scholar
  7. 7.
    Taverna, D., Di Donna, L., Mazzotti, F., Tagarelli, A., Napoli, A., Furia, E., Sindona, G.: Rapid discrimination of bergamot essential oil by paper spray mass spectrometry and chemometric analysis. J. Mass Spectrom. 51, 761–767 (2016)CrossRefGoogle Scholar
  8. 8.
    Jjunju, F., Maher, S., Damon, D., Barrett, R., Syed, S., Heeren, R., Taylor, S., Badu-Tawiah, A.: Screening and quantification of aliphatic primary alkyl corrosion inhibitor amines in water samples by paper spray mass spectrometry. Anal. Chem. 88, 1391–1400 (2016)CrossRefGoogle Scholar
  9. 9.
    Maher, S., Jjunju, F., Damon, D., Gorton, H., Maher, Y., Syed, S., Heeren, R., Young, I., Taylor, S., Badu-Tawiah, A.: Direct analysis and quantification of metaldehyde in water using reactive paper spray mass spectrometry.  Sci. Rep. 6, 35643 (2016). https://doi.org/10.1038/srep35643
  10. 10.
    Oradu, S., Cooks, R.: Multistep mass spectrometry methodology for direct characterization of polar lipids in green microalgae using paper spray ionization. Anal. Chem. 84, 10576–10585 (2012)CrossRefGoogle Scholar
  11. 11.
    Liu, W., Wang, N., Lin, X., Ma, Y., Lin, J.: Interfacing microsampling droplets and mass spectrometry by paper spray ionization for online chemical monitoring of cell culture. Anal. Chem. 86, 7128–7134 (2014)CrossRefGoogle Scholar
  12. 12.
    Ferreira, P., Silva, D., Augusti, R., Piccin, E.: Forensic analysis of ballpoint pen inks using paper spray mass spectrometry. Analyst. 140, 811–819 (2015)CrossRefGoogle Scholar
  13. 13.
    Jurisch, M., Augusti, R.: Detection of signature forgery with erasable pens using paper spray mass spectrometry (PS-MS). Anal. Methods. 8, 4543–4546 (2016)CrossRefGoogle Scholar
  14. 14.
    Li, M., Zhang, J., Jiang, J., Zhang, J., Gao, J., Qiao, X.: Rapid, in situ detection of cocaine residues based on paper spray ionization coupled with ion mobility spectrometry. Analyst. 139, 1687–1691 (2014)CrossRefGoogle Scholar
  15. 15.
    de Paula, C., Lordeiro, R., Piccin, E., Augusti, R.: Paper spray mass spectrometry applied to the detection of cocaine in simulated samples. Anal. Methods. 7, 9145–9149 (2015)CrossRefGoogle Scholar
  16. 16.
    Zheng, Y., Zhang, X., Bai, Z., Zhang, Z.: Characterization of the surface properties of MgO using paper spray mass spectrometry. Rapid Commun. Mass Spectrom. 30, 217–225 (2016)CrossRefGoogle Scholar
  17. 17.
    Banerjee, S., Basheer, C., Zare, R.: A study of heterogeneous catalysis by nanoparticle-embedded paper-spray ionization mass spectrometry. Angew. Chem. Int. Ed. 55, 12807–12811 (2016)CrossRefGoogle Scholar
  18. 18.
    de Paula, C., Valadares, A., Jurisch, M., Piccin, E., Augusti, R.: Paper spray mass spectrometry applied in the monitoring of a chemical system in dynamic chemical equilibrium: the redox process of methylene blue. Rapid Commun. Mass Spectrom. 30, 1176–1180 (2016)CrossRefGoogle Scholar
  19. 19.
    Hamid, A., Jarmusch, A., Pirro, V., Pincus, D., Clay, B., Gervasi, G., Cooks, R.: Rapid discrimination of bacteria by paper spray mass spectrometry. Anal. Chem. 86, 7500–7507 (2014)CrossRefGoogle Scholar
  20. 20.
    Hamid, A., Wei, P., Jarmusch, A., Pirro, V., Cooks, R.: Discrimination of Candida species by paper spray mass spectrometry. Int. J. Mass Spectrom. 378, 288–293 (2015)CrossRefGoogle Scholar
  21. 21.
    Bain, R., Pulliam, C., Raab, S., Cooks, G.: Chemical synthesis accelerated by paper spray: the Haloform reaction. J. Chem. Educ. 93, 340–344 (2016)CrossRefGoogle Scholar
  22. 22.
    Correa, D.N., Santos, J.M., Eberlin, L.S., Eberlin, M.N., Teunissen, S.F.: Forensic chemistry and ambient mass spectrometry: a perfect couple destined for a happy marriage? Anal. Chem. 88, 2515–2526 (2016)CrossRefGoogle Scholar
  23. 23.
    Espy, R.D., Teunissen, S.F., Manicke, N.E., Ren, Y., Ouyang, Z., van Asten, A., Cooks, R.G.: Paper spray and extraction spray mass spectrometry for the direct and simultaneous quantification of eight drugs of abuse in whole blood. Anal. Chem. 86, 7712–7718 (2014)CrossRefGoogle Scholar
  24. 24.
    Li, L., Chen, T.C., Ren, Y., Hendricks, P.I., Cooks, R.G., Ouyang, Z.: Mini 12, miniature mass spectrometer for clinical and other applications–introduction and characterization. Anal. Chem. 86, 2909–2916 (2014)CrossRefGoogle Scholar
  25. 25.
    United Nations Office on Drugs and Crime, World Drug Report. 2016. Vienna, United Nations publication. http://www.unodc.org/ (2016) Accessed May 2016
  26. 26.
    Ambach, L., Hernández Redondo, A., König, S., Weinmann, W.: Rapid and simple LC-MS/MS screening of 64 novel psychoactive substances using dried blood spots. Drug Test Anal. 6, 367–375 (2014)CrossRefGoogle Scholar
  27. 27.
    Rohanova, M., Balikova, M.: Studies on distribution and metabolism of para-methoxymethamphetamine (PMMA) in rats after subcutaneous administration. Toxicology. 259, 61–68 (2009)CrossRefGoogle Scholar
  28. 28.
    Röhrich, J., Becker, J., Kaufmann, T., Zörntlein, S., Urban, R.: Detection of the synthetic drug 4-fluoroamphetamine (4-FA) in serum and urine. Forensic Sci. Int. 215, 3–7 (2012)CrossRefGoogle Scholar
  29. 29.
    Al-Saffar, Y., Stephanson, N.N., Beck, O.: Multicomponent LC-MS/MS screening method for detection of new psychoactive drugs, legal highs, in urine-experience from the Swedish population. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 930, 112–120 (2013)CrossRefGoogle Scholar
  30. 30.
    Johansen, S.S., Hansen, T.M.: Isomers of fluoroamphetamines detected in forensic cases in Denmark. Int. J. Legal Med. 126, 541–547 (2012)CrossRefGoogle Scholar
  31. 31.
    [Anonymous]: Scientific Working Group for Forensic Toxicology (SWGTOX) Standard Practices for Method Validation in Forensic Toxicology. J. Anal. Toxicol. 37, 452–474 (2013)CrossRefGoogle Scholar
  32. 32.
    Peters, F., Maurer, H.: Bioanalytical method validation and its implications for forensic and clinical toxicology – a review. Accreditation and Quality Assurance. 7, 441–449 (2002)CrossRefGoogle Scholar
  33. 33.
    Peters, F., Drummer, O., Musshoff, F.: Validation of new methods. Forensic Sci. Int. 165, 216–224 (2007)CrossRefGoogle Scholar
  34. 34.
    Wille, S., Peters, F., Di Fazio, V., Samyn, N.: Practical aspects concerning validation and quality control for forensic and clinical bioanalytical quantitative methods. Accreditation and Quality Assurance. 16, 279–292 (2011)CrossRefGoogle Scholar
  35. 35.
    Bjork, M., Nielsen, M., Markussen, L., Klinke, H., Linnet, K.: Determination of 19 drugs of abuse and metabolites in whole blood by high-performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 396, 2393–2401 (2010)CrossRefGoogle Scholar
  36. 36.
    Bjork, M., Simonsen, K., Andersen, D., Dalsgaard, P., Siguroardottir, S., Linnet, K., Rasmussen, B.: Quantification of 31 illicit and medicinal drugs and metabolites in whole blood by fully automated solid-phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 405, 2607–2617 (2013)CrossRefGoogle Scholar
  37. 37.
    Berendsen, B., Stolker, L., Nielen, M.: The (Un)certainty of selectivity in liquid chromatography tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 24, 154–163 (2013)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2017

Authors and Affiliations

  • Sebastiaan F. Teunissen
    • 1
    • 2
  • Patrick W. Fedick
    • 2
  • Bjorn J. A. Berendsen
    • 3
  • Michel W. F. Nielen
    • 3
    • 4
  • Marcos N. Eberlin
    • 1
  • R. Graham Cooks
    • 2
  • Arian C. van Asten
    • 5
    • 6
    • 7
  1. 1.ThoMSon Mass Spectrometry LaboratoryUniversity of Campinas - UNICAMPCampinasBrazil
  2. 2.Department of Chemistry and Center for Analytical InstrumentationPurdue UniversityWest LafayetteUSA
  3. 3.RIKILT, Wageningen ResearchWageningenThe Netherlands
  4. 4.Laboratory of Organic ChemistryWageningen UniversityWageningenThe Netherlands
  5. 5.Netherlands Forensic InstituteThe HagueThe Netherlands
  6. 6.Faculty of Science, Van ’t Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
  7. 7.CLHC, Amsterdam Center for Forensic Science and MedicineAmsterdamThe Netherlands

Personalised recommendations