Improved Miniaturized Linear Ion Trap Mass Spectrometer Using Lithographically Patterned Plates and Tapered Ejection Slit

  • Yuan Tian
  • Trevor K. Decker
  • Joshua S. McClellan
  • Linsey Bennett
  • Ailin Li
  • Abraham De la Cruz
  • Derek Andrews
  • Stephen A. Lammert
  • Aaron R. Hawkins
  • Daniel E. Austin
Focus: 32nd Asilomar Conference, Novel Instrumentation in MS and Ion Mobility: Research Article

Abstract

We present a new two-plate linear ion trap mass spectrometer that overcomes both performance-based and miniaturization-related issues with prior designs. Borosilicate glass substrates are patterned with aluminum electrodes on one side and wire-bonded to printed circuit boards. Ions are trapped in the space between two such plates. Tapered ejection slits in each glass plate eliminate issues with charge build-up within the ejection slit and with blocking of ions that are ejected at off-nominal angles. The tapered slit allows miniaturization of the trap features (electrode size, slit width) needed for further reduction of trap size while allowing the use of substrates that are still thick enough to provide ruggedness during handling, assembly, and in-field applications. Plate spacing was optimized during operation using a motorized translation stage. A scan rate of 2300 Th/s with a sample mixture of toluene and deuterated toluene (D8) and xylenes (a mixture of o-, m-, p-) showed narrowest peak widths of 0.33 Th (FWHM).

Graphical Abstract

Keywords

Linear ion trap (LIT) Plate spacing Resolution Scan rate Miniaturization Microfabrication 

References

  1. 1.
    Rushneck, D.R., Diaz, A.V., Howarth, D.W., Rampacek, J., Olson, K.W., Dencker, W.D., Smith, P., McDavid, L., Tomassian, A., Harris, M., Bulota, K., Biemann, K., Lafleur, A.L., Biller, J.E., Owen, T.: Viking gas chromatrograph mass spectrometer. Rev. Sci. Instrum. 49, 817–834 (1978)CrossRefGoogle Scholar
  2. 2.
    Hoffman, J.H., Hodges, R.R., Duerksen, K.D.: Pioneer venus large probe neutral mass spectrometer. J. Vac. Sci. Technol. 16, 692–694 (1979)CrossRefGoogle Scholar
  3. 3.
    Bouvier-Brown, N.C., Carrasco, E., Karz, J., Chang, K., Nguyen, T., Ruiz, D., Okonta, V., Gilman, J.B., Kuster, W.C., de Gouw, J.A.: A portable and inexpensive method for quantifying ambient intermediate volatility organic compounds. Atmos. Environ. 94, 126–133 (2014)CrossRefGoogle Scholar
  4. 4.
    Barreira, L.M.F., Parshintsev, J., Karkkainen, N., Hartonen, K., Jussila, M., Kajos, M., Kulmala, M., Riekkola, M.L.: Field measurements of biogenic volatile organic compounds in the atmosphere by dynamic solid-phase microextraction and portable gas chromatography-mass spectrometry. Atmos. Environ. 115, 214–222 (2015)CrossRefGoogle Scholar
  5. 5.
    Eckenrode, B.A.: Environmental and forensic applications of field-portable GC-MS: an overview. J. Am. Soc. Mass Spectrom. 12, 683–693 (2001)CrossRefGoogle Scholar
  6. 6.
    Graichen, A.M., Vachet, R.W.: Using metal complex ion-molecule reactions in a miniature rectilinear ion trap mass spectrometer to detect chemical warfare agents. J. Am. Soc. Mass Spectrom. 24, 917–925 (2013)CrossRefGoogle Scholar
  7. 7.
    Nagashima, H., Kondo, T., Nagoya, T., Ikeda, T., Kurimata, N., Unoke, S., Seto, Y.: Identification of chemical warfare agents from vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator. J. Chromatogr. A 1406, 279–290 (2015)CrossRefGoogle Scholar
  8. 8.
    Smith, P.A., Lepage, C.J., Lukacs, M., Martin, N., Shufutinsky, A., Savage, P.B.: Field-portable gas chromatography with transmission quadrupole and cylindrical ion trap mass spectrometric detection: Chromatographic retention index data and ion/molecule interactions for chemical warfare agent identification. Int. J. Mass Spectrom. 295, 113–118 (2010)CrossRefGoogle Scholar
  9. 9.
    Mach, P.M., Winfield, J.L., Aguilar, R.A., Wright, K.C., Verbeck, G.F.: A portable mass spectrometer study targeting anthropogenic contaminants in Sub-Antarctic Puerto Williams, Chile. Int. J. Mass Spectrom. In Press, Corrected Proof, Available online 10 December (2016)Google Scholar
  10. 10.
    Short, R.T., Toler, S.K., Kibelka, G.P.G., Rueda Roa, D.T., Bell, R.J., Byrne, R.H.: Detection and quantification of chemical plumes using a portable underwater membrane introduction mass spectrometer. TrAC Trends Anal. Chem. 25, 637–646 (2006)CrossRefGoogle Scholar
  11. 11.
    Ye, H., Gemperline, E., Li, L.: A vision for better health: Mass spectrometry imaging for clinical diagnostics. Clin. Chim. Acta 420, 11–22 (2013)CrossRefGoogle Scholar
  12. 12.
    Li, L., Chen, T., Ren, Y., Hendricks, P.I., Cooks, R.G., Ouyang, Z.: Mini 12, miniature mass spectrometer for clinical and other applications - introduction and characterization. Anal. Chem. 86, 2909–2916 (2014)CrossRefGoogle Scholar
  13. 13.
    Molina, M.A., Zhao, W., Sankaran, S., Schivo, M., Kenyon, N.J., Davis, C.E.: Design-of-experiment optimization of exhaled breath condensate analysis using a miniature differential mobility spectrometer (DMS). Anal. Chim. Acta 628, 155–161 (2008)CrossRefGoogle Scholar
  14. 14.
    Huang, Z., Tan, G., Zhou, Z., Chen, L., Cheng, L., Jin, D., Tan, X., Xie, C., Li, L., Dong, J., Fu, Z., Cheng, P., Gao, W.: Development of a miniature time-of-flight mass/charge spectrometer for ion beam source analyzing. Int. J. Mass Spectrom. 379, 60–64 (2015)CrossRefGoogle Scholar
  15. 15.
    Gao, W., Tan, G., Hong, Y., Li, M., Nian, H., Guo, C., Huang, Z., Fu, Z., Dong, J., Xu, X., Cheng, P., Zhou, Z.: Development of portable single photon ionization time-of-flight mass spectrometer combined with membrane inlet. Int. J. Mass Spectrom. 334, 8–12 (2013)CrossRefGoogle Scholar
  16. 16.
    Getty, S.A., Brinckerhoff, W.B., Cornish, T., Ecelberger, S., Floyd, M.: Compact two-step laser time-of-flight mass spectrometer for in situ analyses of aromatic organics on planetary missions. Rapid Commun. Mass Spectrom. 26, 2786–2790 (2012)CrossRefGoogle Scholar
  17. 17.
    Chen, E.X., Russell, Z.E., Amsden, J.J., Wolter, S.D., Danell, R.M., Parker, C.B., Stoner, B.R., Gehm, M.E., Glass, J.T., Brady, D.J.: Order of magnitude signal gain in magnetic sector mass spectrometry via aperture coding. J. Am. Soc. Mass Spectrom. 26, 1633–1640 (2015)CrossRefGoogle Scholar
  18. 18.
    Li, D., Guo, M., Xiao, Y., Zhao, Y., Wang, L.: Development of a miniature magnetic sector mass spectrometer. Vacuum 85, 1170–1173 (2011)CrossRefGoogle Scholar
  19. 19.
    Wright, S., Malcolm, A., Wright, C., O'Prey, S., Crichton, E., Dash, N., Moseley, R.W., Zaczek, W., Edwards, P., Fussell, R.J., Syms, R.R.A.: A microelectromechanical systems-enabled, miniature triple quadrupole mass spectrometer. Anal. Chem. 87, 3115–3122 (2015)CrossRefGoogle Scholar
  20. 20.
    Orient, O.J., Chutjian., A., Farkanian, V.: Miniature, High-resolution, Quadrupole Mass-Spectrometer Array. Rev. Sci. Instrum. 68, 1393–1397 (1997)Google Scholar
  21. 21.
    Cheung, K., Velasquez-Garcia, L.F., Akinwande, A.I.: Chip-scale quadrupole mass filters for portable mass spectrometry. J. Microelectromech. Syst. 19, 469–483 (2010)CrossRefGoogle Scholar
  22. 22.
    Badman, E.R., Johnson, R.C., Plass, W.R., Cooks, R.G.: A Miniature Cylindrical Quadrupole Ion Trap: Simulation and Experiment. Anal. Chem. 70, 4896–4901 (1998)Google Scholar
  23. 23.
    Schwartz, J.C., Senko, M.W., Syka, J.E.P.: A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 13, 659–669 (2002)CrossRefGoogle Scholar
  24. 24.
    Ouyang, Z., Wu, G., Song, Y., Li, H., Plass, W.R., Cooks, R.G.: Rectilinear ion trap: concepts, calculations, and analytical performance of a new mass analyzer. Anal. Chem. 76, 4595–4605 (2004)CrossRefGoogle Scholar
  25. 25.
    Lammert, S.A., Plass, W.R., Thompson, C.V., Wise, M.B.: Design, optimization and initial performance of a toroidal rf ion trap mass spectrometer. Int. J. Mass Spectrom. 212, 25–40 (2001)CrossRefGoogle Scholar
  26. 26.
    Contreras, J.A., Murray, J.A., Tolley, S.E., Oliphant, J.L., Tolley, H.D., Lammert, S.A., Lee, E.D., Later, D.W., Lee, M.L.: Hand-Portable Gas Chromatograph-Toroidal Ion Trap Mass Spectrometer (GC-TMS) for Detection of Hazardous Compounds. J. Am. Soc. Mass Spectrom. 19, 1425–1434 (2008)Google Scholar
  27. 27.
    Yang, M., Kim, T., Hwang, H., Yi, S., Kim, D.: Development of a palm portable mass spectrometer. J. Am. Soc. Mass Spectrom. 19, 1442–1448 (2008)CrossRefGoogle Scholar
  28. 28.
    He, M., Xue, Z., Zhang, Y., Huang, Z., Fang, X., Qu, F., Ouyang, Z., Xu, W.: Development and characterizations of a miniature capillary electrophoresis mass spectrometry system. Anal. Chem. 379, 2236–2241 (2015)Google Scholar
  29. 29.
    Gao, L., Song, Q., Patterson, G.E., Cooks, R.G., Ouyang, Z.: HandHeld recilinear ion trap mass spectrometer. Anal. Chem. 78, 5994–6002 (2006)CrossRefGoogle Scholar
  30. 30.
    Tian, Y., Higgs, J.M., Li, A., Barney, B.B., Austin, D.E.: How far can ion trap miniaturization go? Parameter scaling and space-charge limits for very small cylindrical ion traps. J. Mass Spectrom. 49, 233–240 (2014)Google Scholar
  31. 31.
    Smith, S.A., Mulligan, C.C., Song, Q., Noll, R.J., Cooks, R.G., Ouyang, Z.: In: March, R.E., Todd, J.F.J. (eds.) Practical aspects of trapped ion trap mass spectrometry: ion traps for miniature, multiplexed, and soft-landing technologies. CRC Press, Boca Raton (2010)Google Scholar
  32. 32.
    Xu, W., Chappell, W.J., Cooks, R.G., Ouyang, Z.: Characterization of electrode surface roughness and its impact on ion trap mass analysis. J. Mass Spectrom. 44, 353–360 (2009)CrossRefGoogle Scholar
  33. 33.
    Avinash, K., Agarwal, A.K., Jana, M.R., Sen, A., Kaw, P.K.: Space-charge effect in the paul trap. Phys. Plasmas. 2, 3569–3572 (1995)CrossRefGoogle Scholar
  34. 34.
    Smith, P.A., Lepage, C.R.J., Savage, P.B., Bowerbank, C.R., Lee, E.D., Lukacs, M.J.: Use of a hand-portable gas chromatograph-toroidal ion trap mass spectrometer for self-chemical ionization identification of degradation products related to O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX). Anal. Chim. Acta 690, 215–220 (2011)CrossRefGoogle Scholar
  35. 35.
    Lammert, S.A., Rockwood, A.A., Wang, M., Lee, M.L., Lee, E.D., Tolley, S.E., Oliphant, J.R., Jones, J.L., Waite, R.W.: Miniature toroidal radio frequency ion trap mass analyzer. J. Am. Soc. Mass Spectrom. 17, 916–922 (2006)CrossRefGoogle Scholar
  36. 36.
    Hager, J.W.: A new linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 16, 512–526 (2002)CrossRefGoogle Scholar
  37. 37.
    Wang L., Xu, F., Ding, C.: Performance and geometry optimization of the ceramic-based rectilinear ion traps. Rapid Commun. Mass Spectrom. 26, 2068–2074 (2012)Google Scholar
  38. 38.
    Chaudhary, A., van Amerom, F.H.W., Short, R.T.: Development of microfabricated cylindrical ion trap mass spectrometer arrays. J. Microelectromech. Syst. 18, 442–448 (2009)Google Scholar
  39. 39.
    Cruz, D., Chang, J.P., Fico, M., Guymon, A.J., Austin, D.E., Blain, M.G.: Design, microfabrication, and analysis of micrometer-sized cylindrical ion trap arrays. Rev. Sci. Instrum. 78, 015017–015109 (2007)CrossRefGoogle Scholar
  40. 40.
    Ouyang, Z., Badman, E.R., Cooks, R.G.: Characterization of a serial array of miniature cylindrical ion trap mass analyzers. Rapid Commun. Mass Spectrom. 13, 2444–2449 (1999)CrossRefGoogle Scholar
  41. 41.
    Fico, M., Maas, J.D., Smith, S.A., Costa, A.B., Ouyang, Z., Chappell, W.J., Cooks, R.G.: Circular arrays of polymer-based miniature rectilinear ion traps. Analyst 134, 1338–1347 (2009)CrossRefGoogle Scholar
  42. 42.
    Wang, Y., Zhang, X., Zhai, Y., Jiang, Y., Fang, X., Zhou, M., Deng, Y., Xu, W.: Mass selective ion transfer and accumulation in ion trap arrays. Anal. Chem. 86, 10164–10170 (2014)CrossRefGoogle Scholar
  43. 43.
    Li, X., Jiang, G., Luo, C., Xu, F., Wang, Y., Ding, L., Ding, C.: Ion trap array mass analyzer: structure and performance. Anal. Chem. 81, 4840–4846 (2009)CrossRefGoogle Scholar
  44. 44.
    Badman, E.R., Cooks, R.G.: A Parallel Miniature Cylindrical Ion Trap Array. Anal. Chem. 72, 3291–3297 (2000)Google Scholar
  45. 45.
    Pau, S., Pai, C.S., Low, Y.L., Moxom, J., Reilly,  P.T.A., Whitten, W.B., Ramsey, J.M.: Microfabricated Quadrupole Ion Trap for Mass Spectrometer Applications. Phys. Rev. Lett. 96, 120801 (2006)Google Scholar
  46. 46.
    Xu, W., Li, L., Zhou, X., Ouyang, Z.: Ion sponge: a 3-dimentional array of quadrupole ion traps for trapping and mass-selectively processing ions in gas phase. Anal. Chem. 86, 4102–4109 (2014)CrossRefGoogle Scholar
  47. 47.
    Wilpers, G., See, P., Gill, P., Sinclair, A.G.: A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology. Nat. Nanotechnol. 7, 572–576 (2012)CrossRefGoogle Scholar
  48. 48.
    Zhang, Z.P., Peng, Y., Hansen, B.J., Miller, I.W., Wang, M., Lee, M.L., Hawkins, A.R., Austin, D.E.: Paul trap mass analyzer consisting of opposing microfabricated electrode plates. Anal. Chem. 81, 5241–5248 (2009)CrossRefGoogle Scholar
  49. 49.
    Austin, D.E., Wang, M., Tolley, S.E., Maas, J.D., Hawkins, A.R., Rockwood, A.L., Tolley, H.D., Lee, E.D., Lee, M.L.: Halo ion trap mass spectrometer. Anal. Chem. 79, 2927–2932 (2007)Google Scholar
  50. 50.
    Peng, Y., Hansen, B.J., Quist, H., Zhang, Z.P., Wang, M., Hawkins, A.R., Austin, D.E.: Coaxial ion trap mass spectrometer: concentric toroidal and quadrupolar trapping regions. Anal. Chem. 83, 5578–5584 (2011)CrossRefGoogle Scholar
  51. 51.
    Hansen, B.J., Niemi, R.J., Hawkins, A.R., Lammert, S.A., Austin, D.E.: A lithographically patterned discrete planar electrode linear ion trap mass spectrometer. J. Microelectromech. Syst. 22, 876–883 (2013)Google Scholar
  52. 52.
    Li, A., Hansen, B.J., Powell, A.T., Hawkins, A.R., Austin, D.E.: Miniaturization of a planar-electrode linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 28, 1338–1344 (2014)CrossRefGoogle Scholar
  53. 53.
    Wang, M., Quist, H.E., Hansen, B.J., Peng, Y., Zhang, Z., Hawkins, A.R., Rockwood, A.L., Austin, D.E., Lee, M.L.: Performance of a halo ion trap mass analyzer with exit slits for axial ejection. J. Am. Soc. Mass Spectrom. 22, 369–378 (2011)CrossRefGoogle Scholar
  54. 54.
    Zhang, Z., Quist, H., Peng, Y., Hansen, B.J., Wang, J., Hawkins, A.R., Austin, D.E.: Effects of higher-order multipoles on the performance of a two-plate quadrupole ion trap mass analyzer. Int. J. Mass Spectrom. 299, 151–157 (2011)CrossRefGoogle Scholar
  55. 55.
    Gill, L.A., Amy, J.W., Vaughn, W.E., Cooks, R.G.: In situ optimization of the electrode geometry of the quadrupole ion trap1. Int. J. Mass Spectrom. 188, 87–93 (1999)CrossRefGoogle Scholar
  56. 56.
    Moxom, J., Reilly, P.T.A., Whitten, W.B., Ramsey, J.M.: Sample pressure effects in a micro ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 18, 721–723 (2004)CrossRefGoogle Scholar
  57. 57.
    Kaiser, R.E., Cooks, R.G., Stafford, G.C., Syka, J.E.P., Hemberger, P.H.: Operation of a quadrupole ion trap mass spectrometer to achieve high mass/charge ratios. Int. J. Mass Spectrom. Ion Process. 106, 79–115 (1991)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2017

Authors and Affiliations

  • Yuan Tian
    • 1
  • Trevor K. Decker
    • 2
  • Joshua S. McClellan
    • 2
  • Linsey Bennett
    • 2
  • Ailin Li
    • 1
  • Abraham De la Cruz
    • 1
  • Derek Andrews
    • 2
  • Stephen A. Lammert
    • 3
  • Aaron R. Hawkins
    • 2
  • Daniel E. Austin
    • 1
  1. 1.Department of Chemistry and BiochemistryBrigham Young UniversityProvoUSA
  2. 2.Department of Electrical and Computer EngineeringBrigham Young UniversityProvoUSA
  3. 3.PerkinElmerAmerican ForkUSA

Personalised recommendations