Journal of The American Society for Mass Spectrometry

, Volume 28, Issue 9, pp 1929–1938 | Cite as

Single Analyzer Precursor Ion Scans in a Linear Quadrupole Ion Trap Using Orthogonal Double Resonance Excitation

Research Article


Reported herein is a simple method of performing single analyzer precursor ion scans in a linear quadrupole ion trap using orthogonal double resonance excitation. A first supplementary AC signal applied to the y electrodes is scanned through ion secular frequencies in order to mass-selectively excite precursor ions while, simultaneously, a second fixed-frequency AC signal is applied orthogonally on the x electrodes in order to eject product ions of selected mass-to-charge ratios towards the detector. The two AC signals are applied orthogonally so as to preclude the possibility of (1) inadvertently ejecting precursor ions into the detector, which results in artifact peaks, and (2) prevent beat frequencies on the x electrodes from ejecting ions off-resonance. Precursor ion scans are implemented while using the inverse Mathieu q scan for easier mass calibration. The orthogonal double resonance experiment results in single ion trap precursor scans with far less intense artifact peaks than when both AC signals are applied to the same electrodes, paving the way for implementation of neutral loss scanning in single ion trap mass spectrometers.

Graphical Abstract


Quadrupole ion trap Precursor ion scan AC frequency scan Secular frequency scan Single analyzer precursor scan Linear ion trap 



The authors acknowledge funding from NASA, Planetary Science Division, Science Mission Directorate (NNX16AJ25G). The authors thank Ryan Hilger (Purdue University) for assistance with the LTQ modifications.


  1. 1.
    Ouyang, Z., Cooks, R.G.: Miniature mass spectrometers. Annu. Rev. Anal. Chem. 2, 187–214 (2009)CrossRefGoogle Scholar
  2. 2.
    Snyder, D.T., Pulliam, C.J., Ouyang, Z., Cooks, R.G.: Miniature and fieldable mass spectrometers: recent advances. Anal. Chem. 88, 2–29 (2016)CrossRefGoogle Scholar
  3. 3.
    Browne, D.L., Wright, S., Deadman, B.J., Dunnage, S., Baxendale, I.R., Turner, R.M., Ley, S.V.: Continuous flow reaction monitoring using an on-line miniature mass spectrometer. Rapid Commun. Mass Spectrom. 26, 1999–2010 (2012)CrossRefGoogle Scholar
  4. 4.
    O'Leary, A.E., Oberacher, H., Hall, S.E., Mulligan, C.C.: Combining a portable, tandem mass spectrometer with automated library searching – an important step towards streamlined, on-site identification of forensic evidence. Anal. Methods 7, 3331–3339 (2015)CrossRefGoogle Scholar
  5. 5.
    Chen, C.H., Lin, Z., Tian, R., Shi, R., Cooks, R.G., Ouyang, Z.: Real-time sample analysis using a sampling probe and miniature mass spectrometer. Anal Chem. 87, 8867–8873 (2015)CrossRefGoogle Scholar
  6. 6.
    Lawton, Z.E., Traub, A., Fatigante, W.L., Mancias, J., O'Leary, A.E., Hall, S.E., Wieland, J.R., Oberacher, H., Gizzi, M.C., Mulligan, C.C.: Analytical validation of a portable mass spectrometer featuring interchangeable, ambient ionization sources for high throughput forensic evidence screening. J. Am. Soc. Mass Spectrom. (2016). doi: 10.1007/s13361-016-1562-2
  7. 7.
    Smith, J.N., Noll, R.J., Cooks, R.G.: Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer. Rapid Commun. Mass Spectrom. 25, 1437–1444 (2011)CrossRefGoogle Scholar
  8. 8.
    Dumlao, M., Sinues, P.M.-L., Nudnova, M., Zenobi, R.: Real-time detection of chemical warfare agent simulants in forensic samples using active capillary plasma ionization with benchtop and field-deployable mass spectrometers. Anal. Methods 6, 3604 (2014)CrossRefGoogle Scholar
  9. 9.
    Hendricks, P.I., Dalgleish, J.K., Shelley, J.T., Kirleis, M.A., McNicholas, M.T., Li, L., Chen, T.C., Chen, C.H., Duncan, J.S., Boudreau, F., Noll, R.J., Denton, J.P., Roach, T.A., Ouyang, Z., Cooks, R.G.: Autonomous in situ analysis and real-time chemical detection using a backpack miniature mass spectrometer: concept, instrumentation development, and performance. Anal. Chem. 86, 2900–2908 (2014)CrossRefGoogle Scholar
  10. 10.
    Urabe, T., Takahashi, K., Kitagawa, M., Sato, T., Kondo, T., Enomoto, S., Kidera, M., Seto, Y.: Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air. Spectrochim Acta A Mol. Biomol. Spectrosc. 120, 437–444 (2014)CrossRefGoogle Scholar
  11. 11.
    Giannoukos, S., Brkic, B., Taylor, S., France, N.: Membrane inlet mass spectrometry for homeland security and forensic applications. J. Am. Soc. Mass Spectrom. 26, 231–239 (2015)CrossRefGoogle Scholar
  12. 12.
    Brinckerhoff, W., Danell, R., Van Ameron, F., Pinnick, V., Li, X., Arevalo, R., Glavin, D., Getty, S., Mahaffy, P., Chu, P.: Development of a linear ion trap mass spectrometer (LITMS) investigation for future planetary surface missions. Conference paper. International Workshop on Instrumentation for Planetary Missions, 4–7 Nov. 2014, Greenbelt, MD, United States (2014)Google Scholar
  13. 13.
    Brinckerhoff, W.B., Pinnick, V.T., van Amerom, F.H.W., Danell, R.M., Arevalo, R.D., Atanassova, M.S., Li, X., Mahaffy, P.R., Cotter, R.J., Goesmann, F., Steininger, H., Team, M.: Mars organic molecule analyzer (MOMA) mass spectrometer for ExoMars 2018 and beyond. Aerospace Conference, 2013 IEEE. Big Sky, MT, USA. 2–9 March 2013 (2013)Google Scholar
  14. 14.
    Wu, Q., Tian, Y., Li, A., Austin, D.E.: Simulations of electrode misalignment effects in two-plate linear ion traps. Int. J. Mass Spectrom. 393, 52–57 (2015)CrossRefGoogle Scholar
  15. 15.
    Tian, Y., Higgs, J., Li, A., Barney, B., Austin, D.E.: How far can ion trap miniaturization go? Parameter scaling and space-charge limits for very small cylindrical ion traps. J. Mass Spectrom. 49, 233–240 (2014)CrossRefGoogle Scholar
  16. 16.
    Fulford, J.E., March, R.E., Mather, R.E., Todd, J.F.J., Waldren, R.M.: The cylindrical ion trap – a theoretical and experimental study. Can. J. Spectrosc. 25, 85–97 (1980)Google Scholar
  17. 17.
    Badman, E.R., Johnson, R.C., Plass, W.R., Cooks, R.G.: A miniature cylindrical quadrupole ion trap: simulation and experiment. Anal. Chem. 70, 4896–4901 (1998)CrossRefGoogle Scholar
  18. 18.
    Wells, J.M., Badman, E.R., Cooks, R.G.: A quadrupole ion trap with cylindrical geometry operated in the mass-selective instability mode. Anal. Chem. 70, 438–444 (1998)CrossRefGoogle Scholar
  19. 19.
    Badman, E.R., Cooks, R.G.: A parallel miniature cylindrical ion trap array. Anal. Chem. 72, 3291–3297 (2000)CrossRefGoogle Scholar
  20. 20.
    Ouyang, Z., Wu, G., Song, Y., Li, H., Plass, W.R., Cooks, R.G.: Rectilinear ion trap: concepts, calculations, and analytical performance of a new mass analyzer. Anal. Chem. 76, 4595–4605 (2004)CrossRefGoogle Scholar
  21. 21.
    Gao, L., Song, Q., Patterson, G.E., Cooks, R.G., Ouyang, Z.: Hand-held rectilinear ion trap mass spectrometer. Anal. Chem. 78, 5994–6002 (2006)CrossRefGoogle Scholar
  22. 22.
    Song, Q., Kothari, S., Senko, M.A., Schwartz, J.C., Amy, J.W., Stafford, G.C., Cooks, R.G., Ouyang, Z.: Rectilinear ion trap mass spectrometer with atmospheric pressure interface and electrospray ionization source. Anal. Chem. 78, 718–725 (2006)CrossRefGoogle Scholar
  23. 23.
    Zhang, C., Chen, H., Guymon, A.J., Wu, G., Cooks, R.G., Ouyang, Z.: Instrumentation and methods for ion and reaction monitoring using a non-scanning rectilinear ion trap. Int. J. Mass Spectrom. 255/256, 1–10 (2006)CrossRefGoogle Scholar
  24. 24.
    Fico, M., Yu, M., Ouyang, Z., Cooks, R.G., Chappell, W.J.: Miniaturization and geometry optimization of a polymer-based rectilinear ion trap. Anal. Chem. 79, 8076–8082 (2007)CrossRefGoogle Scholar
  25. 25.
    Lammert, S.A., Plass, W.R., Thompson, C.V., Wise, M.B.: Design, optimization and initial performance of a toroidal rf ion trap mass spectrometer. Int. J. Mass Spectrom. 212, 25–40 (2001)CrossRefGoogle Scholar
  26. 26.
    Lammert, S.A., Rockwood, A.A., Wang, M., Lee, M.L., Lee, E.D., Tolley, S.E., Oliphant, J.R., Jones, J.L., Waite, R.W.: Miniature toroidal radio frequency ion trap mass analyzer. J. Am. Soc. Mass Spectrom. 17, 916–922 (2006)CrossRefGoogle Scholar
  27. 27.
    Austin, D.E., Wang, M., Tolley, S.E., Maas, J.D., Hawkins, A.R., Rockwood, A.L., Tolley, H.D., Lee, E.D., Lee, M.L.: Halo ion trap mass spectrometer. Anal. Chem. 79, 2927–2932 (2007)CrossRefGoogle Scholar
  28. 28.
    Contreras, J.A., Murray, J.A., Tolley, S.E., Oliphant, J.L., Tolley, H.D., Lammert, S.A., Lee, E.D., Later, D.W., Lee, M.L.: Hand-portable gas chromatograph-toroidal ion trap mass spectrometer (GC-TMS) for detection of hazardous compounds. J. Am. Soc. Mass Spectrom. 19, 1425–1434 (2008)CrossRefGoogle Scholar
  29. 29.
    Peng, Y., Hansen, B.J., Quist, H., Zhang, Z., Wang, M., Hawkins, A.R., Austin, D.E.: Coaxial ion trap mass spectrometer: concentric toroidal and quadrupolar trapping regions. Anal. Chem. 83, 5578–5584 (2011)CrossRefGoogle Scholar
  30. 30.
    Wu, Q., Li, A., Tian, Y., Zare, R.N., Austin, D.E.: Miniaturized linear wire ion trap mass analyzer. Anal. Chem. 88(15), 7800–7806 (2016)Google Scholar
  31. 31.
    Wu, Q., Tian, Y., Li, A., Andrews, D., Hawkins, A.R., Austin, D.E.: A miniaturized linear wire ion trap with electron ionization and single photon ionization sources. J. Am. Soc. Mass Spectrom. 28(5), 859–865 (2017)Google Scholar
  32. 32.
    Schwartz, J.C., Wade, A.P., Enke, C.G., Cooks, R.G.: Systematic delineation of scan modes in multidimensional mass spectrometry. Anal. Chem. 62, 1809–1818 (1990)CrossRefGoogle Scholar
  33. 33.
    Scrivens, J.H., Rollins, K., Jennings, R.C.K.: The implementation and application of precursor-ion scanning using a four-sector instrument. Rapid Commun. Mass Spectrom. 6, 272–277 (1992)CrossRefGoogle Scholar
  34. 34.
    Gu, M., Turecek, F.: The precursor scan – a new-type of experiment in neutralization-reionization mass-spectrometry. Org. Mass Spectrom. 28, 1135–1143 (1993)CrossRefGoogle Scholar
  35. 35.
    Carr, S.A., Huddleston, M.J., Annan, R.S.: Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal. Biochem. 239, 180–192 (1996)CrossRefGoogle Scholar
  36. 36.
    Borchers, C., Parker, C.E., Deterding, L.J., Tomer, K.B.: Preliminary comparison of precursor scans and liquid chromatography-tandem mass spectrometry on a hybrid quadrupole time-of-flight mass spectrometer. J. Chromatogr. A 854, 119–130 (1999)CrossRefGoogle Scholar
  37. 37.
    Steen, H., Küster, B., Fernandez, M., Pandey, A., Mann, M.: Detection of tyrosine phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode. Anal. Chem. 73, 1440–1448 (2001)CrossRefGoogle Scholar
  38. 38.
    Steen, H., Kuster, B., Mann, M.: Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning. J. Mass Spectrom. 36, 782–790 (2001)CrossRefGoogle Scholar
  39. 39.
    Bateman, R.H., Carruthers, R., Hoyes, J.B., Jones, C., Langridge, J.I., Millar, A., Vissers, J.P.: A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. J. Am. Soc. Mass Spectrom. 13, 792–803 (2002)CrossRefGoogle Scholar
  40. 40.
    Ritchie, M.A., Gill, A.C., Deery, M.J., Lilley, K.: Precursor ion scanning for detection and structural characterization of heterogeneous glycopeptide mixtures. J. Am. Soc. Mass Spectrom. 13, 1065–1077 (2002)CrossRefGoogle Scholar
  41. 41.
    Rappsilber, J., Friesen, W.J., Paushkin, S., Dreyfuss, G., Mann, M.: Detection of arginine dimethylated peptides by parallel precursor ion scanning mass spectrometry in positive ion mode. Anal. Chem. 75, 3107–3114 (2003)CrossRefGoogle Scholar
  42. 42.
    Sandra, K., Devreese, B., Van Beeumen, J., Stals, I., Claeyssens, M.: The Q-Trap mass spectrometer, a novel tool in the study of protein glycosylation. J. Am. Soc. Mass Spectrom. 15, 413–423 (2004)CrossRefGoogle Scholar
  43. 43.
    Ejsing, C.S., Duchoslav, E., Sampaio, J., Simons, K., Bonner, R., Thiele, C., Ekroos, K., Shevchenko, A.: Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal. Chem. 78, 6202–6214 (2006)CrossRefGoogle Scholar
  44. 44.
    Iglesias, A.H., Santos, L.F., Gozzo, F.C.: Identification of cross-linked peptides by high-resolution precursor ion scan. Anal. Chem. 82, 909–916 (2010)CrossRefGoogle Scholar
  45. 45.
    Yost, R.A., Enke, C.G.: Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation. Anal. Chem. 51, 1251–1264 (1979)CrossRefGoogle Scholar
  46. 46.
    Eberlin, M.N.: Triple-stage pentaquadrupole (QqQqQ) mass spectrometry and ion/molecule reactions. Mass Spectrom. Rev. 16, 113–144 (1997)CrossRefGoogle Scholar
  47. 47.
    Johnson, J.V., Pedder, R.E., Yost, R.A.: MS-MS parent scans on a quadrupole ion trap mass-spectrometer by simultaneous resonant excitation of multiple ions. Int. J. Mass Spectrom. Ion Processes 106, 197–212 (1991)CrossRefGoogle Scholar
  48. 48.
    McClellan, J.E., Quarmby, S.T., Yost, R.A.: Parent and neutral loss monitoring on a quadrupole ion trap mass spectrometer: screening of acylcarnitines in complex mixtures. Anal. Chem. 74, 5799–5806 (2002)CrossRefGoogle Scholar
  49. 49.
    Swaney, D.L., McAlister, G.C., Coon, J.J.: Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat. Methods 5, 959–964 (2008)CrossRefGoogle Scholar
  50. 50.
    Schroeder, M.J., Shabanowitz, J., Schwartz, J.C., Hunt, D.F., Coon, J.J.: A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal. Chem. 76, 3590–3598 (2004)CrossRefGoogle Scholar
  51. 51.
    Bern, M., Finney, G., Hoopmann, M.R., Merrihew, G., Toth, M.J., MacCoss, M.J.: Deconvolution of mixture spectra from ion-trap data-independent-acquisition tandem mass spectrometry. Anal. Chem. 82, 833–841 (2010)CrossRefGoogle Scholar
  52. 52.
    Li, L., Chen, T.C., Ren, Y., Hendricks, P.I., Cooks, R.G., Ouyang, Z.: Mini 12, miniature mass spectrometer for clinical and other applications – introduction and characterization. Anal. Chem. 86, 2909–2916 (2014)CrossRefGoogle Scholar
  53. 53.
    Snyder, D.T., Pulliam, C.J., Cooks, R.G.: Single analyzer precursor scans using an ion trap. Rapid Commun. Mass Spectrom. 30, 800–804 (2016)CrossRefGoogle Scholar
  54. 54.
    Snyder, D.T., Pulliam, C.J., Cooks, R.G.: Calibration procedure for secular frequency scanning in an ion trap. Rapid Commun. Mass Spectrom. 30, 1190–1196 (2016)CrossRefGoogle Scholar
  55. 55.
    Juraschek, R., Dulcks, T., Karas, M.: Nanoelectrospray – more than just a minimized-flow electrospray ionization source. J. Am. Soc. Mass Spectrom. 10, 300–308 (1999)CrossRefGoogle Scholar
  56. 56.
    Fulford, J.E., Nhu-Hoa, D., Hughes, R.J., March, R.E., Bonner, R.F., Wong, G.J.: Radio-frequency mass selective excitation and resonant ejection of ions in a three-dimensional quadrupole ion trap. J. Vac. Sci. Technol. 17, 829–835 (1980)CrossRefGoogle Scholar
  57. 57.
    Asam, M.R., Glish, G.L.: Tandem mass spectrometry of alkali cationized polysaccharides in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 8, 987–995 (1997)CrossRefGoogle Scholar
  58. 58.
    Zhang, X., Wang, Y., Hu, L., Guo, D., Fang, X., Zhou, M., Xu, W.: Reducing space charge effects in a linear ion trap by rhombic ion excitation and ejection. J. Am. Soc. Mass Spectrom. 27, 1256–1262 (2016)CrossRefGoogle Scholar
  59. 59.
    Lee, H., Jhang, C.S., Liu, J.T., Lin, C.H.: Rapid screening and determination of designer drugs in saliva by a nib-assisted paper spray-mass spectrometry and separation technique. J. Sep. Sci. 35, 2822–2825 (2012)CrossRefGoogle Scholar
  60. 60.
    Lesiak, A.D., Musah, R.A., Cody, R.B., Domin, M.A., Dane, A.J., Shepard, J.R.: Direct analysis in real time mass spectrometry (DART-MS) of "bath salt" cathinone drug mixtures. Analyst 138, 3424–3432 (2013)CrossRefGoogle Scholar
  61. 61.
    Presley, B.C., Jansen-Varnum, S.A., Logan, B.K.: Analysis of synthetic cannabinoids in botanical material: a review of analytical methods and findings. Forensic Sci. Rev. 25, 27–46 (2013)Google Scholar
  62. 62.
    Snyder, D.T., Fedick, P.W., Cooks, R.G.: Multigenerational collision-induced dissociation for characterization of organic compounds. Anal. Chem. 88, 9572–9581 (2016)CrossRefGoogle Scholar
  63. 63.
    McLuckey, S.A., Goeringer, D.E.: Slow heating methods in tandem mass spectrometry. J. Mass Spectrom. 32, 461–474 (1997)CrossRefGoogle Scholar
  64. 64.
    Lopez, L.L., Tiller, P.R., Senko, M.W., Schwartz, J.C.: Automated strategies for obtaining standardized collisionally induced dissociation spectra on a benchtop ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 13, 663–668 (1999)CrossRefGoogle Scholar
  65. 65.
    Snyder, D.T., Cooks, R.G.: Multigenerational broadband collision-induced dissociation of precursor ions in a linear ion trap. J. Am. Soc. Mass Spectrom. 27, 1914–1921 (2016)CrossRefGoogle Scholar
  66. 66.
    Snyder, D.T., Cooks, R.G.: Ion isolation and multigenerational collision-induced dissociation using the inverse Mathieu q scan. Rapid Commun. Mass Spectrom. 31, 200–206 (2017)CrossRefGoogle Scholar
  67. 67.
    Evans-Nguyen, T., Becker, L., Doroshenko, V., Cotter, R.J.: Development of a low power, high mass range mass spectrometer for Mars surface analysis. Int. J. Mass Spectrom. 278, 170–177 (2008)CrossRefGoogle Scholar
  68. 68.
    Snyder, D.T., Pulliam, C.J., Wiley, J.S., Duncan, J., Cooks, R.G.: Experimental characterization of secular frequency scanning in ion trap mass spectrometers. J. Am. Soc. Mass Spectrom. 27, 1243–1255 (2016)CrossRefGoogle Scholar
  69. 69.
    Wang, Y., Huang, Z., Jiang, Y., Xiong, X., Deng, Y., Fang, X., Xu, W.: The coupling effects of hexapole and octopole fields in quadrupole ion traps: a theoretical study. J. Mass Spectrom. 48, 937–944 (2013)CrossRefGoogle Scholar
  70. 70.
    Wang, Y., Franzen, J., Wanczek, K.P.: The nonlinear resonance ion trap. Part 2. A general theoretical analysis. Int. J. Mass Spectrom. Ion Processes 124, 125–144 (1993)Google Scholar
  71. 71.
    Franzen, J.: The nonlinear ion trap. Part 5. Nature of nonlinear resonances and resonant ion ejection. Int. J. Mass Spectrom. Ion Processes 130, 15–40 (1994)Google Scholar
  72. 72.
    Wang, Y., Franzen, J.: The nonlinear ion trap. Part 3. Multipole components in three types of practical ion trap. Int. J. Mass Spectrom. Ion Processes 132, 155–172 (1994)Google Scholar
  73. 73.
    Shay, B.J., Eberlin, M.N., Cooks, R.G., Wesdemiotis, C.: Ion-molecule reactions and collision-activated dissociation of C, Hp isomers: a case study in the use of the MS3 capabilities of a pentaquadrupole mass spectrometer. J. Am. Soc. Mass Spectrom. 3, 518–534 (1991)CrossRefGoogle Scholar
  74. 74.
    Sorrilha, A.E., Gozzo, F.C., Pimpim, R.S., Eberlincor, M.N.: Multiple stage pentaquadrupole mass spectrometry for generation and characterization of gas-phase ionic species. The case of the PyC2H 5 (+.) isomers. J. Am. Soc. Mass Spectrom. 7, 1126–1137 (1996)CrossRefGoogle Scholar
  75. 75.
    Juliano, V.F., Gozzo, F.C., Eberlin, M.N., Kascheres, C., do Lago, C.L.: Fast multidimensional (3D and 4D) MS2 and MS3 scans in a high-transmission pentaquadrupole mass spectrometer. Anal. Chem. 68, 1328–1334 (1996)CrossRefGoogle Scholar
  76. 76.
    Snyder, D.T., Pulliam, C.J., Cooks, R.G.: Linear mass scans in quadrupole ion traps using the inverse Mathieu q scan. Rapid Commun. Mass Spectrom. 30, 2369–2378 (2016)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2017

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations