SITS Derivatization of Peptides to Enhance 266 nm Ultraviolet Photodissociation (UVPD)

  • M. Montana Quick
  • M. Rachel Mehaffey
  • Robert W. Johns
  • W. Ryan Parker
  • Jennifer S. Brodbelt
Focus: Bio-Ion Chemistry: Interactions of Biological Ions with Ions, Molecules, Surfaces, Electrons, and Light: Research Article


N-terminal derivatization of peptides with the chromogenic reagent 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (SITS) is demonstrated to enhance the efficiency of 266 nm ultraviolet photodissociation (UVPD). Attachment of the chromophore results in a mass shift of 454 Da and provides significant gains in the number and abundances of diagnostic fragment ions upon UVPD. Activation of SITS-tagged peptides with 266 nm UVPD leads to many fragment ions akin to the a/b/y ions commonly produced by CID, along with other sequence ions (c, x, and z) typically accessed through higher energy pathways. Extreme bias towards C-terminal fragment ions is observed upon activation of SITS-tagged peptides using multiple 266 nm laser pulses. Due to the high reaction efficiency of the isothiocyanate coupling to the N-terminus of peptides, we demonstrate the ability to adapt this strategy to a high-throughput LC-MS/MS workflow with 266 nm UVPD.

Graphical Abstract


Ion activation Ultraviolet photodissociation Derivatization Peptide 



The authors acknowledge the following funding sources: NSF (Grant CHE1402753) and the Welch Foundation (Grant F-1155). R.W.J. acknowledges an ALS Doctoral Fellowship in Residence and support from the Welch Foundation (F-1848 to Delia Milliron).

Supplementary material

13361_2017_1650_MOESM1_ESM.pdf (541 kb)
ESM 1 (PDF 540 kb)


  1. 1.
    Mayne, J., Ning, Z., Zhang, X., Starr, A.E., Chen, R., Deeke, S., Chiang, C.-K., Xu, B., Wen, M., Cheng, K., Seebun, D., Star, A., Moore, J.I., Figeys, D.: Bottom-up proteomics (2013–2015): keeping up in the era of systems biology. Anal. Chem. 88, 95–121 (2016)CrossRefGoogle Scholar
  2. 2.
    Ahlf, D.R., Thomas, P.M., Kelleher, N.L.: Developing top down proteomics to maximize proteome and sequence coverage from cells and tissues. Curr. Opin. Chem. Biol. 17, 787–794 (2013)CrossRefGoogle Scholar
  3. 3.
    Aebersold, R., Mann, M.: Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016)CrossRefGoogle Scholar
  4. 4.
    Gillet, L.C., Leitner, A., Aebersold, R.: Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing. Annu. Rev. Anal. Chem. 9, 449–472 (2016)CrossRefGoogle Scholar
  5. 5.
    Toby, T.K., Fornelli, L., Kelleher, N.L.: Progress in top-down proteomics and the analysis of proteoforms. Annu. Rev. Anal. Chem. 9, 499–519 (2016)CrossRefGoogle Scholar
  6. 6.
    Cai, W., Tucholski, T.M., Gregorich, Z.R., Ge, Y.: Top-down proteomics: technology advancements and applications to heart diseases. Expert Rev. Proteom. 13, 717–730 (2016)CrossRefGoogle Scholar
  7. 7.
    Brodbelt, J.S.: Ion activation methods for peptides and proteins. Anal. Chem. 88, 30–51 (2016)CrossRefGoogle Scholar
  8. 8.
    Oh, H.B., Moon, B.: Radical-driven peptide backbone dissociation tandem mass spectrometry. Mass Spectrom. Rev. 34, 116–132 (2015)CrossRefGoogle Scholar
  9. 9.
    Frese, C.K., Altelaar, A.F.M., van den Toorn, H., Nolting, D., Griep-Raming, J., Heck, A.J.R., Mohammed, S.: Toward full peptide sequence coverage by dual fragmentation combining electron-transfer and higher-energy collision dissociation tandem mass spectrometry. Anal. Chem. 84, 9668–9673 (2012)CrossRefGoogle Scholar
  10. 10.
    Qi, Y., Volmer, D.A.: Electron-based fragmentation methods in mass spectrometry: an overview. Mass Spectrom. Rev. 36, 4-15 (2015).Google Scholar
  11. 11.
    Wysocki, V.H., Joyce, K.E., Jones, C.M., Beardsley, R.L.: Surface-induced dissociation of small molecules, peptides, and noncovalent protein complexes. J. Am. Soc. Mass Spectrom. 19, 190–208 (2008)CrossRefGoogle Scholar
  12. 12.
    Quintyn, R.S., Yan, J., Wysocki, V.H.: Surface-induced dissociation of homotetramers with D2 symmetry yields their assembly pathways and characterizes the effect of ligand binding. Chem. Biol. 22, 583–592 (2015)CrossRefGoogle Scholar
  13. 13.
    Hoffmann, W.D., Jackson, G.P.: Charge transfer dissociation (CTD) mass spectrometry of peptide cations using kiloelectronvolt helium cations. J. Am. Soc. Mass Spectrom. 25, 1939–1943 (2014)CrossRefGoogle Scholar
  14. 14.
    Ropartz, D., Li, P., Fanuel, M., Giuliani, A., Rogniaux, H., Jackson, G.P.: Charge transfer dissociation of complex oligosaccharides: comparison with collision-induced dissociation and extreme ultraviolet dissociative photoionization. J. Am. Soc. Mass Spectrom. 27, 1614–1619 (2016)CrossRefGoogle Scholar
  15. 15.
    Cook, S.L., Zimmermann, C.M., Singer, D., Fedorova, M., Hoffmann, R., Jackson, G.P.: Comparison of CID, ETD, and metastable atom-activated dissociation (MAD) of doubly and triply charged phosphorylated tau peptides. J. Mass Spectrom. 47, 786–794 (2012)CrossRefGoogle Scholar
  16. 16.
    Deimler, R.E., Sander, M., Jackson, G.P.: Radical-induced fragmentation of phospholipid cations using metastable atom-activated dissociation mass spectrometry (MAD-MS). Int. J. Mass Spectrom. 390, 178–186 (2015)CrossRefGoogle Scholar
  17. 17.
    Brodbelt, J.S.: Photodissociation mass spectrometry: new tools for characterization of biological molecules. Chem. Soc. Rev. 43, 2757–2783 (2014)CrossRefGoogle Scholar
  18. 18.
    Reilly, J.P.: Ultraviolet photofragmentation of biomolecular ions. Mass Spectrom. Rev. 28, 425–447 (2009)CrossRefGoogle Scholar
  19. 19.
    Cannon, J.R., Martinez-Fonts, K., Robotham, S.A., Matouschek, A., Brodbelt, J.S.: Top-down 193-nm ultraviolet photodissociation mass spectrometry for simultaneous determination of polyubiquitin chain length and topology. Anal. Chem. 87, 1812–1820 (2015)CrossRefGoogle Scholar
  20. 20.
    Ly, T., Julian, R.R.: Ultraviolet photodissociation: developments towards applications for mass-spectrometry-based proteomics. Angew. Chem. Int. Ed. 48, 7130–7137 (2009)CrossRefGoogle Scholar
  21. 21.
    Cismesia, A.P., Bailey, L.S., Bell, M.R., Tesler, L.F., Polfer, N.C.: Making mass spectrometry see the light: the promises and challenges of cryogenic infrared ion spectroscopy as a bioanalytical technique. J. Am. Soc. Mass Spectrom. 27, 757–766 (2016)CrossRefGoogle Scholar
  22. 22.
    Polfer, N.C.: Infrared multiple photon dissociation spectroscopy of trapped ions. Chem. Soc. Rev. 40, 2211–2221 (2011)CrossRefGoogle Scholar
  23. 23.
    Shaw, J.B., Li, W., Holden, D.D., Zhang, Y., Griep-Raming, J., Fellers, R.T., Early, B.P., Thomas, P.M., Kelleher, N.L., Brodbelt, J.S.: Complete protein characterization using top-down mass spectrometry and ultraviolet photodissociation. J. Am. Chem. Soc. 135, 12646–12651 (2013)CrossRefGoogle Scholar
  24. 24.
    Brodbelt, J.S., Wilson, J.J.: Infrared multiphoton dissociation in quadrupole ion traps. Mass Spectrom. Rev. 28, 390–424 (2009)CrossRefGoogle Scholar
  25. 25.
    Madsen, J.A., Xu, H., Robinson, M.R., Horton, A.P., Shaw, J.B., Giles, D.K., Kaoud, T.S., Dalby, K.N., Trent, M.S., Brodbelt, J.S.: High-throughput database search and large-scale negative polarity LC-MS/MS with ultraviolet photodissociation for complex proteomic samples. Mol. Cell. Proteom. 12, 2604–2614 (2013).Google Scholar
  26. 26.
    Greer, S.M., Cannon, J.R., Brodbelt, J.S.: Improvement of shotgun proteomics in the negative mode by carbamylation of peptides and ultraviolet photodissociation mass spectrometry. Anal. Chem. 86, 12285–12290 (2014)CrossRefGoogle Scholar
  27. 27.
    Madsen, J.A., Boutz, D.R., Brodbelt, J.S.: Ultrafast ultraviolet photodissociation at 193 nm and its applicability to proteomic workflows. J. Proteome Res. 9, 4205–4214 (2010)CrossRefGoogle Scholar
  28. 28.
    Holden, D.D., Makarov, A., Schwartz, J.C., Sanders, J.D., Zhuk, E., Brodbelt, J.S.: Ultraviolet photodissociation induced by light-emitting diodes in a planar ion trap. Angew. Chem. 128, 12605–12609 (2016)CrossRefGoogle Scholar
  29. 29.
    Cui, W., Thompson, M.S., Reilly, J.P.: Pathways of peptide ion fragmentation induced by vacuum ultraviolet light. J. Am. Soc. Mass Spectrom. 16, 1384–1398 (2005)CrossRefGoogle Scholar
  30. 30.
    Brodbelt, J.S.: Shedding light on the frontier of photodissociation. J. Am. Soc. Mass Spectrom. 22, 197–206 (2011)CrossRefGoogle Scholar
  31. 31.
    Hendricks, N.G., Lareau, N.M., Stow, S.M., McLean, J.A., Julian, R.R.: Bond-specific dissociation following excitation energy transfer for distance constraint determination in the gas phase. J. Am. Chem. Soc. 136, 13363–13370 (2014)CrossRefGoogle Scholar
  32. 32.
    Cotham, V.C., Wine, Y., Brodbelt, J.S.: Selective 351 nm photodissociation of cysteine-containing peptides for discrimination of antigen-binding regions of IgG fragments in bottom-up liquid chromatography-tandem mass spectrometry workflows. Anal. Chem. 85, 5577–5585 (2013)CrossRefGoogle Scholar
  33. 33.
    Robotham, S.A., Kluwe, C., Cannon, J.R., Ellington, A., Brodbelt, J.S.: De novo sequencing of peptides using selective 351 nm ultraviolet photodissociation mass spectrometry. Anal. Chem. 85, 9832–9838 (2013)CrossRefGoogle Scholar
  34. 34.
    Robotham, S.A., Horton, A.P., Cannon, J.R., Cotham, V.C., Marcotte, E.M., Brodbelt, J.S.: UVnovo: a de novo sequencing algorithm using single series of fragment ions via chromophore tagging and 351 nm ultraviolet photodissociation mass spectrometry. Anal. Chem. 88, 3990–3997 (2016)CrossRefGoogle Scholar
  35. 35.
    O’Brien, J.P., Pruet, J.M., Brodbelt, J.S.: Chromogenic chemical probe for protein structural characterization via ultraviolet photodissociation mass spectrometry. Anal. Chem. 85, 7391–7397 (2013)CrossRefGoogle Scholar
  36. 36.
    Aponte, J.R., Vasicek, L., Swaminathan, J., Xu, H., Koag, M.C., Lee, S., Brodbelt, J.S.: Streamlining bottom-up protein identification based on selective ultraviolet photodissociation (UVPD) of chromophore-tagged histidine- and tyrosine-containing peptides. Anal. Chem. 86, 6237–6244 (2014)CrossRefGoogle Scholar
  37. 37.
    Agarwal, A., Diedrich, J.K., Julian, R.R.: Direct elucidation of disulfide bond partners using ultraviolet photodissociation mass spectrometry. Anal. Chem. 83, 6455–6458 (2011)CrossRefGoogle Scholar
  38. 38.
    Diedrich, J.K., Julian, R.R.: Facile identification of phosphorylation sites in peptides by radical directed dissociation. Anal. Chem. 83, 6818–6826 (2011)CrossRefGoogle Scholar
  39. 39.
    Diedrich, J.K., Julian, R.R.: Site-specific radical directed dissociation of peptides at phosphorylated residues. J. Am. Chem. Soc. 130, 12212–12213 (2008)CrossRefGoogle Scholar
  40. 40.
    Parker, W.R., Holden, D.D., Cotham, V.C., Xu, H., Brodbelt, J.S.: Cysteine-selective peptide identification: selenium-based chromophore for selective S–Se bond cleavage with 266 nm ultraviolet photodissociation. Anal. Chem. 88, 7222–7229 (2016)CrossRefGoogle Scholar
  41. 41.
    Parker, W.R., Brodbelt, J.S.: Characterization of the cysteine content in proteins utilizing cysteine selenylation with 266 nm ultraviolet photodissociation (UVPD). J. Am. Soc. Mass Spectrom. 27, 1344–1350 (2016)CrossRefGoogle Scholar
  42. 42.
    Liu, Z., Julian, R.R.: Deciphering the peptide iodination code: influence on subsequent gas-phase radical generation with photodissociation ESI-MS. J. Am. Soc. Mass Spectrom. 20, 965–971 (2009)CrossRefGoogle Scholar
  43. 43.
    Ly, T., Julian, R.R.: Residue-specific radical-directed dissociation of whole proteins in the gas phase. J. Am. Chem. Soc. 130, 351–358 (2008)CrossRefGoogle Scholar
  44. 44.
    Enjalbert, Q., Girod, M., Simon, R., Jeudy, J., Chirot, F., Salvador, A., Antoine, R., Dugourd, P., Lemoine, J.: Improved detection specificity for plasma proteins by targeting cysteine-containing peptides with photo-SRM. Anal. Bioanal. Chem. 405, 2321–2331 (2013)CrossRefGoogle Scholar
  45. 45.
    Enjalbert, Q., Simon, R., Salvador, A., Antoine, R., Redon, S., Ayhan, M.M., Darbour, F., Chambert, S., Bretonnière, Y., Dugourd, P., Lemoine, J.: Photo-SRM: laser-induced dissociation improves detection selectivity of selected reaction monitoring mode. Rapid Commun. Mass Spectrom. 25, 3375–3381 (2011)CrossRefGoogle Scholar
  46. 46.
    Wilson, J.J., Brodbelt, J.S.: MS/MS Simplification by 355 nm ultraviolet photodissociation of chromophore-derivatized peptides in a quadrupole ion trap. Anal. Chem. 79, 7883–7892 (2007)CrossRefGoogle Scholar
  47. 47.
    Vasicek, L.A., Wilson, J.J., Brodbelt, J.S.: Improved infrared multiphoton dissociation of peptides through N-terminal phosphonite derivatization. J. Am. Soc. Mass Spectrom. 20, 377–384 (2011)CrossRefGoogle Scholar
  48. 48.
    Vasicek, L., Brodbelt, J.S.: Enhancement of ultraviolet photodissociation efficiencies through attachment of aromatic chromophores. Anal. Chem. 82, 9441–9446 (2010)CrossRefGoogle Scholar
  49. 49.
    Oh, J.Y., Moon, J.H., Lee, Y.H., Hyung, S.-W., Lee, S.-W., Kim, M.S.: Photodissociation tandem mass spectrometry at 266 nm of an aliphatic peptide derivatized with phenyl isothiocyanate and 4-sulfophenyl isothiocyanate. Rapid Commun. Mass Spectrom. 19, 1283–1288 (2005)CrossRefGoogle Scholar
  50. 50.
    Keough, T., Youngquist, R.S., Lacey, M.P.: Sulfonic acid derivatives for peptide sequencing by MALDI MS. Anal. Chem. 75, 156A–165A (2003)CrossRefGoogle Scholar
  51. 51.
    Robotham, S.A., Brodbelt, J.S.: Comparison of ultraviolet photodissociation and collision induced dissociation of adrenocorticotropic hormone peptides. J. Am. Soc. Mass Spectrom. 26, 1570–1579 (2015)CrossRefGoogle Scholar
  52. 52.
    Bauer, M.D., Sun, Y., Keough, T., Lacey, M.P.: Sequencing of sulfonic acid derivatized peptides by electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 14, 924–929 (2000)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2017

Authors and Affiliations

  • M. Montana Quick
    • 1
  • M. Rachel Mehaffey
    • 1
  • Robert W. Johns
    • 2
    • 3
  • W. Ryan Parker
    • 1
  • Jennifer S. Brodbelt
    • 1
  1. 1.Department of ChemistryUniversity of TexasAustinUSA
  2. 2.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  3. 3.McKetta Department of Chemical EngineeringUniversity of TexasAustinUSA

Personalised recommendations