Fischer Indole Synthesis in the Gas Phase, the Solution Phase, and at the Electrospray Droplet Interface

  • Ryan M. Bain
  • Stephen T. Ayrton
  • R. Graham Cooks
Focus: Bio-Ion Chemistry: Interactions of Biological Ions with Ions, Molecules, Surfaces, Electrons, and Light : Research Article

Abstract

Previous reports have shown that reactions occurring in the microdroplets formed during electrospray ionization can, under the right conditions, exhibit significantly greater rates than the corresponding bulk solution-phase reactions. The observed acceleration under electrospray ionization could result from a solution-phase, a gas-phase, or an interfacial reaction. This study shows that a gas-phase ion/molecule (or ion/ion) reaction is not responsible for the observed rate enhancement in the particular case of the Fischer indole synthesis. The results show that the accelerated reaction proceeds in the microdroplets, and evidence is provided that an interfacial process is involved.

Graphical Abstract

<!-- [INSERT GRAPHICAL ABSTRACT TEXT HERE] -->

Keywords

Electrospray Accelerated reactions Fischer indole synthesis 

Supplementary material

13361_2017_1597_MOESM1_ESM.docx (480 kb)
ESM 1(DOCX 479 kb)

References

  1. 1.
    Takáts, Z., Wiseman, J.M., Gologan, B., Cooks, R.G.: Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695), 471–473 (2004)CrossRefGoogle Scholar
  2. 2.
    Liu, J., Wang, H., Manicke, N.E., Lin, J.-M., Cooks, R.G., Ouyang, Z.: Development, characterization, and application of paper spray ionization. Anal. Chem. 82(6), 2463–2471 (2010)CrossRefGoogle Scholar
  3. 3.
    Espy, R.D., Wleklinski, M., Yan, X., Cooks, R.G.: Beyond the flask: reactions on the fly in ambient mass spectrometry. TrAC Trends Anal. Chem. 57, 135–146 (2014)CrossRefGoogle Scholar
  4. 4.
    Wu, C., Ifa, D.R., Manicke, N.E., Cooks, R.G.: Rapid, direct analysis of chloesterol by charge labeling in reactive desorption electrospray ionization. Anal. Chem. 81, 7618–7624 (2009)CrossRefGoogle Scholar
  5. 5.
    Wu, Q., Comi, T.J., Li, B., Rubakhin, S.S., Sweedler, J.V.: On-tissue derivatization via electrospray deposition for matrix-assisted laser desorption/ionization mass spectrometry imaging of endogenous fatty acids in rat brain tissues. Anal. Chem. 88(11), 5988–5995 (2016)CrossRefGoogle Scholar
  6. 6.
    Girod, M., Moyano, E., Campbell, D.I., Cooks, R.G.: Accelerated bimolecular reactions in microdroplets studied by desorption electrospray ionization mass spectrometry. Chem. Sci. 2(3), 501–510 (2011)CrossRefGoogle Scholar
  7. 7.
    Yan, X., Augusti, R., Li, X., Cooks, R.G.: Chemical reactivity assessment using reactive paper spray ionization mass spectrometry: the Katritzky reaction. ChemPlusChem 78(9), 1142–1148 (2013)CrossRefGoogle Scholar
  8. 8.
    Zhou, X., Pei, J., Huang, G.: Reactive paper spray mass spectrometry for in situ identification of quinones. Rapid Commun. Mass Spectrom. 29(1), 100–106 (2015)CrossRefGoogle Scholar
  9. 9.
    Bag, S., Hendricks, P., Reynolds, J.C., Cooks, R.G.: Biogenic aldehyde determination by reactive paper spray ionization mass spectrometry. Anal. Chim. Acta 860, 37–42 (2015)CrossRefGoogle Scholar
  10. 10.
    Mazzotti, F., Di Donna, L., Taverna, D., Nardi, M., Aiello, D., Napoli, A., Sindona, G.: Evaluation of dialdehydic anti-inflammatory active principles in extra-virgin olive oil by reactive paper spray mass spectrometry. Int. J. Mass Spectrom. 352, 87–91 (2013)CrossRefGoogle Scholar
  11. 11.
    Vikse, K.L., Woods, M.P., McIndoe, J.S.: Pressurized sample infusion for the continuous analysis of air- and moisture-sensitive reactions using electrospray ionization mass spectrometry. Organometallics 29(23), 6615–6618 (2010)CrossRefGoogle Scholar
  12. 12.
    Ingram, A.J., Boeser, C.L., Zare, R.N.: Going beyond electrospray: mass spectrometric studies of chemical reactions in and on liquids. Chem. Sci. 7(1), 39–55 (2016)CrossRefGoogle Scholar
  13. 13.
    Ma, X., Zhang, S., Zhang, X.: An instrumentation perspective on reaction monitoring by ambient mass spectrometry. TrAC Trends Anal. Chem. 35, 50–66 (2012)CrossRefGoogle Scholar
  14. 14.
    Yan, X., Bain, R.M., Li, Y., Qiu, R., Flick, T.G., Cooks, R.G.: Online inductive electrospray ionization mass spectrometry as a process analytical technology tool to monitor the synthetic route to anagliptin. Org. Process Res. Dev. 20(5), 940–947Google Scholar
  15. 15.
    Yan, X., Sokol, E., Li, X., Li, G., Xu, S., Cooks, R.G.: On-line reaction monitoring and mechanistic studies by mass spectrometry: Negishi cross-coupling, hydrogenolysis, and reductive amination. Angew. Chem. Int. Ed. Engl. 53(23), 5931–5935 (2014)CrossRefGoogle Scholar
  16. 16.
    Santanilla, A.B., Regalado, E.L., Pereira, T., Shelvin, M., Bateman, K., Campeau, L., Schneeweis, J., Berritt, S., Shi, Z., Nantermet, P., Liu, Y., Helmy, R., Welch, C.J., Vachal, P., Davies, I.W., Cernak, T., Dreher, S.D.: Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347(6217), 49–53 (2015)CrossRefGoogle Scholar
  17. 17.
    Wleklinski, M., Falcone, C.E., Loren, B.P., Jaman, Z., Iyer, K., Ewan, H.S., Hyun, S.-H., Thompson, D.H., Cooks, R.G.: Can accelerated reactions in droplets guide chemistry at scale? European J. Org. Chem. 2016(33), 5480–5484 (2016)CrossRefGoogle Scholar
  18. 18.
    Yan, X., Bain, R.M., Cooks, R.G.: Organic Reactions in Microdroplets: Reaction Acceleration Revealed by Mass Spectrometry. Angew. Chem. Int. Ed. Engl. (2016)Google Scholar
  19. 19.
    Lee, J.K., Banerjee, S., Nam, H.G., Zare, R.N.: Acceleration of reaction in charged microdroplets. Q. Rev. Biophys. 48(4), 437–444 (2015)CrossRefGoogle Scholar
  20. 20.
    Bain, R.M., Pulliam, C.J., Cooks, R.G.: Accelerated Hantzsch electrospray synthesis with temporal control of reaction intermediates. Chem. Sci. 6(1), 397–401 (2015)CrossRefGoogle Scholar
  21. 21.
    Bain, R.M., Pulliam, C.J., Ayrton, S.T., Bain, K., Cooks, R.G.: Accelerated hydrazone formation in charged microdroplets. Rapid Commun. Mass Spectrom. 30(16), 1875–1878 (2016)CrossRefGoogle Scholar
  22. 22.
    Muller, T., Badu-Tawiah, A., Cooks, R.G.: Accelerated carbon–carbon bond-forming reactions in preparative electrospray. Angew. Chem. Int. Ed. Engl. 51(47), 11832–11835 (2012)CrossRefGoogle Scholar
  23. 23.
    Bain, R.M., Pulliam, C.J., Yan, X., Moore, K.F., Müller, T., Cooks, R.G.: Mass spectrometry in organic synthesis: Claisen-Schmidt base-catalyzed condensation and Hammett correlation of substituent effects. J. Chem. Edu. 91(11), 1985–1989 (2014)CrossRefGoogle Scholar
  24. 24.
    Lee, J.K., Kim, S., Nam, H.G., Zare, R.N.: Microdroplet fusion mass spectrometry for rast reaction kinetics. Proc. Natl. Acad. Sci. U. S. A. 112(13), 3898–3903 (2015)CrossRefGoogle Scholar
  25. 25.
    Li, Y., Yan, X., Cooks, R.G.: The role of the interface in thin film and droplet accelerated reactions studied by competetive substituent effects. Angew. Chem. Int. Ed. 55, 3433–3437 (2016)CrossRefGoogle Scholar
  26. 26.
    Crawford, E.A., Esen, C., Volmer, D.A.: Real time monitoring of containerless microreactions in acoustically levitated droplets via ambient ionization mass spectrometry. Anal. Chem. 88(17), 8396–403 (2016)CrossRefGoogle Scholar
  27. 27.
    Bain, R.M., Pulliam, C.J., Thery, F., Cooks, R.G.: Accelerated chemical reactions and organic synthesis in Leidenfrost droplets. Ang. Chem. Int. Ed. Engl 55(35), 10478–10482 (2016)CrossRefGoogle Scholar
  28. 28.
    Fallah-Araghi, A., Meguellati, K., Baret, J.C., El Harrak, A., Mangeat, T., Karplus, M., Ladame, S., Marques, C.M., Griffiths, A.D.: Enhanced chemical synthesis at soft interfaces: a universal reaction-adsorption mechanism in microcompartments. Phys. Rev. Lett. 112(2), 028301 (2014)CrossRefGoogle Scholar
  29. 29.
    Badu-Tawiah, A.K., Campbell, D.I., Cooks, R.G.: Accelerated C–N bond formation in dropcast thin films on ambient surfaces. J. Am. Soc. Mass Spectrom. 23(9), 1461–1468 (2012)CrossRefGoogle Scholar
  30. 30.
    Narayan, S., Muldoon, J., Finn, M.G., Fokin, V.V., Kolb, H.C., Sharpless, K.B.: “On water”: unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed. Engl. 44(21), 3275–3279 (2005)CrossRefGoogle Scholar
  31. 31.
    Jung, Y., Marcus, R.A.: On the theory of organic catalysis “on Water”. J. Am. Chem. Soc. 129(17), 5492–5502 (2007)CrossRefGoogle Scholar
  32. 32.
    Wang, G., Cole, R.B.: Effect of solution uonic strecgth on analyte charge state distributions in positive and negative ion electrospray mass spectrometry. Anal. Chem. 33, 3702–3708 (1994)CrossRefGoogle Scholar
  33. 33.
    Zhou, S., Prebyl, B.S., Cook, K.D.: Profiling pH changes in the electrospray plume. Anal. Chem. 74, 4485–4888 (2002)Google Scholar
  34. 34.
    Fenn, J.B.: Ion formation from charged droplets: roles of geometry, energy, and time. J. Am. Soc. Mass Spectrom. 4, 524–535 (1993)CrossRefGoogle Scholar
  35. 35.
    Wortmann, A., Kistler-Momotova, A., Zenobi, R., Heine, M.C., Wilhelm, O., Pratsinis, S.E.: Shrinking droplets in electrospray ionization and their influence on chemical equilibria. J. Am. Soc. Mass Spectrom. 18(3), 385–393 (2007)CrossRefGoogle Scholar
  36. 36.
    Tang, K., Gomez, A.: On the structure of an electrostatic spray of monodisperse droplets. Phys. Fluids 6(7), 2317 (1994)CrossRefGoogle Scholar
  37. 37.
    Wilhelm, O., Mädler, L., Pratsinis, S.E.: Electrospray evaporation and deposition. J. Aerosol Sci. 34(7), 815–836 (2003)CrossRefGoogle Scholar
  38. 38.
    Smith, J.N., Flagam, R.C., Beauchamp, J.L.: Droplet evaporation and discharge dynamics in electrospray ionization. J. Phys. Chem. A 106, 9957–9967 (2002)CrossRefGoogle Scholar
  39. 39.
    Cech, N.B., Enke, C.G.: Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 20(6), 362–387 (2001)CrossRefGoogle Scholar
  40. 40.
    Konermann, L., Ahadi, E., Rodriguez, A.D., Vahidi, S.: Unraveling the mechanism of electrospray ionization. Anal. Chem. 85(1), 2–9 (2013)CrossRefGoogle Scholar
  41. 41.
    Yue, X., Vahidi, S., Konermann, L.: Insights into the mechanism of protein electrospray ionization from salt adduction measurements. J. Am. Soc. Mass Spectrom. 25(8), 1322–1331 (2014)CrossRefGoogle Scholar
  42. 42.
    Gioumousis, G., Stevenson, D.P.: Reactions of gaseous molecule ions with gaseous molecules. V. Theory. J. Chem. Phy. 29(2), 294–299 (1958)Google Scholar
  43. 43.
    Glish, G.L., Cooks, R.G.: The Fischer indole synthesis and pinacol rearrangement in the mass spectrometer. J. Am. Chem. Soc. 100(12), 6720–6725 (1978)CrossRefGoogle Scholar
  44. 44.
    Chen, H., Eberlin, L.S., Nefliu, M., Augusti, R., Cooks, R.G.: Organic reactions of ionic intermediates promoted by atmospheric-pressure thermal activation. Angew. Chem. Int. Ed. Engl. 47(18), 3422–3425 (2008)CrossRefGoogle Scholar
  45. 45.
    Wilm, M., Mann, M.: Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68(1), 1–8 (1996)CrossRefGoogle Scholar
  46. 46.
    Badu-Tawiah, A., Cooks, R.G.: Enhanced ion signals in desorption electrospray ionization using surfactant spray solutions. J. Am. Soc. Mass Spectrom. 21(8), 1423–1431 (2010)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2017

Authors and Affiliations

  • Ryan M. Bain
    • 1
  • Stephen T. Ayrton
    • 1
  • R. Graham Cooks
    • 1
  1. 1.560 Oval Drive Department of Chemistry and the Center for Analytical Instrumentation DevelopmentPurdue UniversityWest LafayetteUSA

Personalised recommendations