Tapered-Tip Capillary Electrophoresis Nano-Electrospray Ionization Mass Spectrometry for Ultrasensitive Proteomics: the Mouse Cortex

  • Sam B. Choi
  • Marta Zamarbide
  • M. Chiara Manzini
  • Peter Nemes
Focus: Emerging Investigators: Research Article


Ultrasensitive characterization of the proteome raises the potential to understand how differential gene expression orchestrates cell heterogeneity in the brain. Here, we report a microanalytical capillary electrophoresis nano-flow electrospray ionization (CE-nanoESI) interface for mass spectrometry to enable the measurement of limited amounts of proteins in the mouse cortex. Our design integrates a custom-built CE system to a tapered-tip metal emitter in a co-axial sheath-flow configuration. This interface can be constructed in <15 min using readily available components, facilitating broad adaptation. Tapered-tip CE-nanoESI generates stable electrospray by reproducibly anchoring the Taylor cone, minimizes sample dilution in the ion source, and ensures efficient ion generation by sustaining the cone-jet spraying regime. Parallel reaction monitoring provided a 260-zmol lower limit of detection for angiotensin II (156,000 copies). CE was able to resolve a complex mixture of peptides in ~330,000 theoretical plates and identify ~15 amol (~1 pg) of BSA or cytochrome c. Over 30 min of separation, 1 ng protein digest from the mouse cortex yielded 217 nonredundant proteins encompassing a ~3-log-order concentration range using a quadrupole time-of-flight mass spectrometer. Identified proteins included many products from genes that are traditionally used to mark oligodendrocytes, astrocytes, and microglia. Finally, key proteins involved in neurodegenerative disorders were detected (e.g., parkinsonism and spastic paraplegia). CE-nanoESI-HRMS delivers sufficient sensitivity to detect proteins in limited amounts of tissues and cell populations to help understand how gene expression differences maintain cell heterogeneity in the brain.

Graphical Abstract


Capillary electrophoresis Mass spectrometry Bottom-up proteomics Neuron Central nervous system Mouse 

Supplementary material

13361_2016_1532_MOESM1_ESM.xlsx (133 kb)
ESM 1(XLSX 132 kb)
13361_2016_1532_MOESM2_ESM.xlsx (215 kb)
ESM 2(XLSX 215 kb)


  1. 1.
    Picotti, P., Clement-Ziza, M., Lam, H., Campbell, D.S., Schmidt, A., Deutsch, E.W., Rost, H., Sun, Z., Rinner, O., Reiter, L., Shen, Q., Michaelson, J.J., Frei, A., Alberti, S., Kusebauch, U., Wollscheid, B., Moritz, R.L., Beyer, A., Aebersold, R.: A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494, 266–270 (2013)CrossRefGoogle Scholar
  2. 2.
    Nagaraj, N., Kulak, N.A., Cox, J., Neuhauser, N., Mayr, K., Hoerning, O., Vorm, O., Mann, M.: System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol. Cell. Proteom. 11, M111.013722 (2012)CrossRefGoogle Scholar
  3. 3.
    Hebert, A.S., Richards, A.L., Bailey, D.J., Ulbrich, A., Coughlin, E.E., Westphall, M.S., Coon, J.J.: The one hour yeast proteome. Mol. Cell. Proteom. 13, 339–347 (2014)CrossRefGoogle Scholar
  4. 4.
    McAlister, G.C., Nusinow, D.P., Jedrychowski, M.P., Wuhr, M., Huttlin, E.L., Erickson, B.K., Rad, R., Haas, W., Gygi, S.P.: Multinotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal. Chem. 86, 7150–7158 (2014)CrossRefGoogle Scholar
  5. 5.
    Kim, M.S., Pinto, S.M., Getnet, D., Nirujogi, R.S., Manda, S.S., Chaerkady, R., Madugundu, A.K., Kelkar, D.S., Isserlin, R., Jain, S., Thomas, J.K., Muthusamy, B., Leal-Rojas, P., Kumar, P., Sahasrabuddhe, N.A., Balakrishnan, L., Advani, J., George, B., Renuse, S., Selvan, L.D.N., Patil, A.H., Nanjappa, V., Radhakrishnan, A., Prasad, S., Subbannayya, T., Raju, R., Kumar, M., Sreenivasamurthy, S.K., Marimuthu, A., Sathe, G.J., Chavan, S., Datta, K.K., Subbannayya, Y., Sahu, A., Yelamanchi, S.D., Jayaram, S., Rajagopalan, P., Sharma, J., Murthy, K.R., Syed, N., Goel, R., Khan, A.A., Ahmad, S., Dey, G., Mudgal, K., Chatterjee, A., Huang, T.C., Zhong, J., Wu, X.Y., Shaw, P.G., Freed, D., Zahari, M.S., Mukherjee, K.K., Shankar, S., Mahadevan, A., Lam, H., Mitchell, C.J., Shankar, S.K., Satishchandra, P., Schroeder, J.T., Sirdeshmukh, R., Maitra, A., Leach, S.D., Drake, C.G., Halushka, M.K., Prasad, T.S.K., Hruban, R.H., Kerr, C.L., Bader, G.D., Iacobuzio-Donahue, C.A., Gowda, H., Pandey, A.: A draft map of the human proteome. Nature 509, 575–581 (2014)CrossRefGoogle Scholar
  6. 6.
    Sharma, K., Schmitt, S., Bergner, C.G., Tyanova, S., Kannaiyan, N., Manrique-Hoyos, N., Kongi, K., Cantuti, L., Hanisch, U.K., Philips, M.A., Rossner, M.J., Mann, M., Simons, M. Cell type- and brain region-resolved mouse brain proteome. Nat. Neurosci. 18, 1819–1831 (2015)Google Scholar
  7. 7.
    Tasic, B., Menon, V., Nguyen, T.N., Kim, T.K., Jarsky, T., Yao, Z.Z., Levi, B., Gray, L.T., Sorensen, S.A., Dolbeare, T., Bertagnolli, D., Goldy, J., Shapovalova, N., Parry, S., Lee, C., Smith, K., Bernard, A., Madisen, L., Sunkin, S.M., Hawrylycz, M., Koch, C., Zeng, H.K.: Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016)CrossRefGoogle Scholar
  8. 8.
    Zeisel, A., Munoz-Manchado, A.B., Codeluppi, S., Lonnerberg, P., La Manno, G., Jureus, A., Marques, S., Munguba, H., He, L.Q., Betsholtz, C., Rolny, C., Castelo-Branco, G., Hjerling-Leffler, J., Linnarsson, S.: Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-Seq. Science 347, 1138–1142 (2015)CrossRefGoogle Scholar
  9. 9.
    Lanni, E.J., Rubakhin, S.S., Sweedler, J.V.: Mass spectrometry imaging and profiling of single cells. J. Proteom. 75, 5036–5051 (2012)CrossRefGoogle Scholar
  10. 10.
    Rubakhin, S.S., Romanova, E.V., Nemes, P., Sweedler, J.V.: Profiling metabolites and peptides in single cells. Nat. Methods 8, S20–S29 (2011)CrossRefGoogle Scholar
  11. 11.
    Buchberger, A., Yu, Q., Li, L.J.: Advances in mass spectrometric tools for probing neuropeptides. Annu. Rev. Anal. Chem. 8, 485–509 (2015)CrossRefGoogle Scholar
  12. 12.
    Wang, D.J., Bodovitz, S.: Single cell analysis: the new frontier in 'omics. Trends Biotechnol. 28, 281–290 (2010)CrossRefGoogle Scholar
  13. 13.
    Hofstadler, S.A., Swanek, F.D., Gale, D.C., Ewing, A.G., Smith, R.D.: Capillary electrophoresis electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for direct analysis of cellular proteins. Anal. Chem. 67, 1477–1480 (1995)CrossRefGoogle Scholar
  14. 14.
    Valaskovic, G.A., Kelleher, N.L., McLafferty, F.W.: Attomole protein characterization by capillary electrophoresis-mass spectrometry. Science 273, 1199–1202 (1996)CrossRefGoogle Scholar
  15. 15.
    Mellors, J.S., Jorabchi, K., Smith, L.M., Ramsey, J.M.: Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry. Anal. Chem. 82, 967–973 (2010)CrossRefGoogle Scholar
  16. 16.
    Bendall, S.C., Simonds, E.F., Qiu, P., Amir, E.A.D., Krutzik, P.O., Finck, R., Bruggner, R.V., Melamed, R., Trejo, A., Ornatsky, O.I., Balderas, R.S., Plevritis, S.K., Sachs, K., Pe'er, D., Tanner, S.D., Nolan, G.P.: Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011)CrossRefGoogle Scholar
  17. 17.
    Waanders, L.F., Chwalek, K., Monetti, M., Kumar, C., Lammert, E., Mann, M.: Quantitative proteomic analysis of single pancreatic islets. Proc. Natl. Acad. Sci. USA 106, 18902–18907 (2009)CrossRefGoogle Scholar
  18. 18.
    Wang, N., Xu, M.G., Wang, P., Li, L.: Development of mass spectrometry-based shotgun method for proteome analysis of 500 to 5000 cancer cells. Anal. Chem. 82, 2262–2271 (2010)CrossRefGoogle Scholar
  19. 19.
    Chen, Q., Yan, G.Q., Gao, M.X., Zhang, X.M.: Direct digestion of proteins in living cells into peptides for proteomic analysis. Anal. Bioanal. Chem. 407, 1027–1032 (2015)CrossRefGoogle Scholar
  20. 20.
    Yue, G.H., Luo, Q.Z., Zhang, J., Wu, S.L., Karger, B.L.: Ultratrace LC/MS proteomic analysis using 10-μm-i.d. porous layer open tubular poly(styrene-divinylbenzene) capillary columns. Anal. Chem. 79, 938–946 (2007)CrossRefGoogle Scholar
  21. 21.
    Luo, Q., Yue, G., Valaskovic, G.A., Gu, Y., Wu, S.L., Karger, B.L.: On-Line line 1D and 2D porous layer open tubular/LC-ESI-MS using 10-μm-i.d. poly(styrene-divinylbenzene) columns for ultrasensitive proteomic analysis. Anal. Chem. 79, 6174–6181 (2007)CrossRefGoogle Scholar
  22. 22.
    Shen, Y., Tolic, N., Masselon, C., Pasa-Tolic, L., Camp, D.G., Hixson, K.K., Zhao, R., Anderson, G.A., Smith, R.D.: Ultrasensitive proteomics using high-efficiency on-line micro-SPE-nanoLC-nanoESI MS and MS/MS. Anal. Chem. 76, 144–154 (2004)CrossRefGoogle Scholar
  23. 23.
    Li, S.Y., Plouffe, B.D., Belov, A.M., Ray, S., Wang, X.Z., Murthy, S.K., Karger, B.L., Ivanov, A.R.: An integrated platform for isolation, processing, and mass spectrometry-based proteomic profiling of rare cells in whole blood. Mol. Cell. Proteom. 14, 1672–1683 (2015)CrossRefGoogle Scholar
  24. 24.
    Smith, R.D., Barinaga, C.J., Udseth, H.R.: Improved electrospray ionization interface for capillary zone electrophoresis-mass spectrometry. Anal. Chem. 60, 1948–1952 (1988)CrossRefGoogle Scholar
  25. 25.
    Bonvin, G., Schappler, J., Rudaz, S.: Capillary electrophoresis-electrospray ionization-mass spectrometry interfaces: fundamental concepts and technical developments. J. Chromatogr. A. 1267(17–31), 36 (2012)Google Scholar
  26. 26.
    Lindenburg, P.W., Haselberg, R., Rozing, G., Ramautar, R.: Developments in interfacing designs for CE-MS: towards enabling tools for proteomics and metabolomics. Chromatographia 78, 367–377 (2015)CrossRefGoogle Scholar
  27. 27.
    Maxwell, E.J., Chen, D.D.Y.: Twenty years of interface development for capillary electrophoresis-electrospray ionization-mass spectrometry. Anal. Chim. Acta 627, 25–33 (2008)CrossRefGoogle Scholar
  28. 28.
    Bendahl, L., Hansen, S.H., Olsen, J.: A new sheathless electrospray interface for coupling of capillary electrophoresis to ion-trap mass spectrometry. Rapid Commun. Mass Spectrom. 16, 2333–2340 (2002)CrossRefGoogle Scholar
  29. 29.
    Chen, Y.R., Her, G.R.: A simple method for fabrication of silver-coated sheathless electrospray emitters. Rapid Commun. Mass Spectrom. 17, 437–441 (2003)CrossRefGoogle Scholar
  30. 30.
    Ramsey, R.S., McLuckey, S.A.: Capillary electrophoresis/electrospray ionization ion trap mass spectrometry using a sheathless interface. J. Microcolumn Sep. 7, 461–469 (1995)CrossRefGoogle Scholar
  31. 31.
    Zamfir, A.D., Dinca, N., Sisu, E., Peter-Katalinic, J.: Copper-coated microsprayer interface for on-line sheathless capillary electrophoresis electrospray mass spectrometry of carbohydrates. J. Sep. Sci. 29, 414–422 (2006)CrossRefGoogle Scholar
  32. 32.
    Kriger, M.S., Cook, K.D., Ramsey, R.S.: Durable gold-coated fused silica capillaries for use in electrospray mass spectrometry. Anal. Chem. 67, 385–389 (1995)CrossRefGoogle Scholar
  33. 33.
    Moini, M.: Simplifying CE-MS Operation. 2. Interfacing low-flow separation techniques to mass spectrometry using a porous tip. Anal. Chem. 79, 4241–4246 (2007)CrossRefGoogle Scholar
  34. 34.
    Faserl, K., Sarg, B., Kremser, L., Lindner, H.: Optimization and evaluation of a sheathless capillary electrophoresis-electrospray ionization mass spectrometry platform 37 for peptide analysis: comparison to liquid chromatography electrospray ionization mass spectrometry. Anal. Chem. 83, 7297–7305 (2011)CrossRefGoogle Scholar
  35. 35.
    Wang, C.C., Lee, C.S., Smith, R.D., Tang, K.Q.: Capillary isotachophoresis-nanoelectrospray ionization-selected reaction monitoring MS via a novel sheathless interface for high sensitivity sample quantification. Anal. Chem. 85, 7308–7315 (2013)CrossRefGoogle Scholar
  36. 36.
    Wang, Y., Fonslow, B.R., Wong, C.C.L., Nakorchevsky, A., Yates, J.R.: Improving the comprehensiveness and sensitivity of sheathless capillary electrophoresis-tandem mass spectrometry for proteomic analysis. Anal. Chem. 84, 8505–8513 (2012)CrossRefGoogle Scholar
  37. 37.
    Guo, X.J., Fillmore, T.L., Gao, Y.Q., Tang, K.Q.: Capillary electrophoresis-nanoelectrospray ionization selected reaction monitoring mass spectrometry via a true sheathless metal-coated emitter interface for robust and high-sensitivity sample quantification. Anal. Chem. 88, 4418–4425 (2016)CrossRefGoogle Scholar
  38. 38.
    Han, X., Wang, Y., Aslanian, A., Bern, M., Lavallee-Adam, M., Yates, J.R.: Sheathless capillary electrophoresis tandem mass spectrometry for top-down characterization of Pyrococcus furiosus proteins on a proteome scale. Anal. Chem. 86, 11006–11012 (2014)CrossRefGoogle Scholar
  39. 39.
    Zhao, Y.M., Riley, N.M., Sun, L.L., Hebert, A.S., Yan, X.J., Westphall, M.S., Rush, M.J.P., Zhu, G.J., Champion, M.M., Medie, F.M., Champion, P.A.D., Coon, J.J., Dovichi, N.J.: Coupling capillary zone electrophoresis with electron transfer dissociation and activated ion electron transfer dissociation for top-down proteomics. Anal. Chem. 87, 5422–5429 (2015)CrossRefGoogle Scholar
  40. 40.
    Bush, D.R., Zang, L., Belov, A.M., Ivanov, A.R., Kargert, B.L.: High-resolution CZE-MS quantitative characterization of intact biopharmaceutical proteins: proteoforms of interferon-β1. Anal. Chem. 88, 1138–1146 (2016)CrossRefGoogle Scholar
  41. 41.
    Bruins, A.P., Covey, T.R., Henion, J.D.: Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry. Anal. Chem. 59, 2642–2646 (1987)CrossRefGoogle Scholar
  42. 42.
    Hashimoto, M., Ishihama, Y., Tomita, M., Soga, T.: Microelectrospray interface with coaxial sheath flow for high-resolution capillary electrophoresis/mass spectrometry separation. Rapid Commun. Mass Spectrom. 21, 3579–3584 (2007)CrossRefGoogle Scholar
  43. 43.
    Sun, L.L., Li, Y.H., Champion, M.M., Zhu, G.J., Wojcik, R., Dovichi, N.J.: Capillary zone electrophoresis-multiple reaction monitoring from 100 pg of RAW 264.7 cell lysate digest. Analyst 138, 3181–3188 (2013)CrossRefGoogle Scholar
  44. 44.
    Li, Y.H., Wojcik, R., Dovichi, N.J., Champion, M.M.: Quantitative multiple reaction monitoring of peptide abundance introduced via a capillary zone electrophoresis-electrospray interface. Anal. Chem. 84, 6116–6121 (2012)CrossRefGoogle Scholar
  45. 45.
    Sun, L., Zhu, G., Zhao, Y., Yan, X., Mou, S., Dovichi, N.J.: Ultrasensitive and fast bottom-up analysis of femtogram amounts of complex proteome digests. Angew. Chem. Int. Ed. 52, 13661–13664 (2013)CrossRefGoogle Scholar
  46. 46.
    Li, Y.H., Compton, P.D., Tran, J.C., Ntai, I., Kelleher, N.L.: Optimizing capillary electrophoresis for top-down proteomics of 30–80 kDa proteins. Proteomics 14, 1158–1164 (2014)CrossRefGoogle Scholar
  47. 47.
    Sun, L.L., Zhu, G.J., Zhang, Z.B., Mou, S., Dovichi, N.J.: Third-generation electrokinetically pumped sheath-flow nanospray interface with improved stability and sensitivity for automated capillary zone electrophoresis-mass spectrometry analysis of complex proteome digests. J. Proteome Res. 14, 2312–2321 (2015)CrossRefGoogle Scholar
  48. 48.
    Ludwig, K.R., Sun, L.L., Zhu, G.J., Dovichi, N.J., Hummon, A.B.: Over 2300 phosphorylated peptide identifications with single-shot capillary zone electrophoresis tandem mass spectrometry in a 100 min separation. Anal. Chem. 87, 9532–9537 (2015)CrossRefGoogle Scholar
  49. 49.
    Lapainis, T., Rubakhin, S.S., Sweedler, J.V.: Capillary electrophoresis with electrospray ionization mass spectrometric detection for single-cell metabolomics. Anal. Chem. 81, 5858–5864 (2009)CrossRefGoogle Scholar
  50. 50.
    Nemes, P., Knolhoff, A.M., Rubakhin, S.S., Sweedler, J.V.: Metabolic differentiation of neuronal phenotypes by single-cell capillary electrophoresis-electrospray ionization mass spectrometry. Anal. Chem. 83, 6810–6817 (2011)CrossRefGoogle Scholar
  51. 51.
    Nemes, P., Rubakhin, S.S., Aerts, J.T., Sweedler, J.V.: Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry. Nat. Protoc. 8, 783–799 (2013)CrossRefGoogle Scholar
  52. 52.
    Nemes, P., Knolhoff, A.M., Rubakhin, S.S., Sweedler, J.V.: Single-cell metabolomics: changes in the metabolome of freshly isolated and cultured neurons. ACS Chem. Neurosci. 3, 782–792 (2012)CrossRefGoogle Scholar
  53. 53.
    Onjiko, R.M., Moody, S.A., Nemes, P.: Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo. Proc. Natl. Acad. Sci. USA 112, 6545–6550 (2015)CrossRefGoogle Scholar
  54. 54.
    Onjiko, R.M., Morris, S.E., Moody, S.A., Nemes, P.: Single-cell mass spectrometry with multi-solvent extraction identifies metabolic differences between left and right blastomeres in the 8-cell frog (Xenopus) embryo. Analyst 141, 3648–3656 (2016)CrossRefGoogle Scholar
  55. 55.
    Lombard-Banek, C., Moody, S.A., Nemes, P.: Single-cell mass spectrometry for discovery proteomics: quantifying translational cell heterogeneity in the 16-cell frog (Xenopus) embryo. Angew. Chem. Int. Ed. 55, 2454–2458 (2016)CrossRefGoogle Scholar
  56. 56.
    Lombard-Banek, C., Reddy, S., Moody, S.A., Nemes, P.: Label-free quantification of proteins in single embryonic cells with neural fate in the cleavage-stage frog (Xenopus laevis) embryo using capillary electrophoresis electrospray ionization high-resolution mass spectrometry (CE-ESI-HRMS). Mol. Cell. Proteom. 15, 2756–2768 (2016)CrossRefGoogle Scholar
  57. 57.
    Gonzalez-Ruiz, V., Codesido, S., Far, J., Rudaz, S., Schappler, J.: Evaluation of a new low sheath-flow interface for CE-MS. Electrophoresis 37, 936–946 (2016)CrossRefGoogle Scholar
  58. 58.
    Craig, R., Cortens, J.P., Beavis, R.C.: Open source system for analyzing, validating, and storing protein identification data. J. Proteome. Res. 3, 1234–1242 (2004)CrossRefGoogle Scholar
  59. 59.
    Smith, R.D., Olivares, J.A., Nguyen, N.T., Udseth, H.R.: Capillary zone electrophoresis-mass spectrometry using an electrospray ionization interface. Anal. Chem. 60, 436–441 (1988)CrossRefGoogle Scholar
  60. 60.
    Schmidt, A., Karas, M., Dulcks, T.: Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: When does ESI turn into nano-ESI? J. Am. Soc. Mass Spectrom. 14, 492–500 (2003)CrossRefGoogle Scholar
  61. 61.
    Nemes, P., Marginean, I., Vertes, A.: Spraying mode effect on droplet formation and ion chemistry in electrosprays. Anal. Chem. 79, 3105–3116 (2007)CrossRefGoogle Scholar
  62. 62.
    Valaskovic, G.A., Murphy, J.P., Lee, M.S.: Automated orthogonal control system for electrospray ionization. J. Am. Soc. Mass Spectrom. 15, 1201–1215 (2004)CrossRefGoogle Scholar
  63. 63.
    Iavarone, A.T., Williams, E.R.: Mechanism of charging and supercharging molecules in electrospray ionization. J. Am. Chem. Soc. 125, 2319–2327 (2003)CrossRefGoogle Scholar
  64. 64.
    Cox, J., Hein, M.Y., Luber, C.A., Paron, I., Nagaraj, N., Mann, M.: Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 13, 2513–2526 (2014)CrossRefGoogle Scholar
  65. 65.
    Ferencz, B., Gerritsen, L.: Genetics and underlying pathology of dementia. Neuropsychol. Rev. 25, 113–124 (2015)Google Scholar
  66. 66.
    Manzini, M.C., Rajab, A., Maynard, T.M., Mochida, G.H., Tan, W.H., Nasir, R., Hill, R.S., Gleason, D., Al Saffar, M., Partlow, J.N., Barry, B.J., Vernon, M., LaMantia, A.S., Walsh, C.A.: Developmental and degenerative features in a complicated spastic paraplegia. Ann. Neurol. 67, 516–525 (2010)CrossRefGoogle Scholar
  67. 67.
    Sun, L.L., Zhu, G.J., Dovichi, N.J.: Integrated capillary zone electrophoresis electrospray ionization tandem mass spectrometry system with an immobilized trypsin microreactor for online digestion and analysis of picogram amounts of RAW 264.7 cell lysate. Anal. Chem. 85, 4187–4194 (2013)CrossRefGoogle Scholar
  68. 68.
    Faserl, K., Kremser, L., Muller, M., Teis, D., Lindner, H.H.: Quantitative proteomics using ultra low flow capillary electrophoresis-mass spectrometry. Anal. Chem. 87, 4633–4640 (2015)CrossRefGoogle Scholar
  69. 69.
    Vizcaíno, J., Csordas, A., del Toro, N., Dianes, J., Griss, J., Lavidas, I., Mayer, G., Perez-Riverol, Y., Reisinger, F., Ternent, T., Xu, Q., Wang, R., Hermjakob, H.: Update of the PRIDE database and related tools. Nucleic. Acids. Res. 44, D447–D456 (2016)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2016

Authors and Affiliations

  1. 1.Department of ChemistryThe George Washington UniversityWashingtonUSA
  2. 2.Department of Pharmacology and PhysiologyThe George Washington UniversityWashingtonUSA

Personalised recommendations