Davies, M.J.: Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Biophys. Res. Commun. 305, 761–770 (2003)
Article
CAS
Google Scholar
Davies, M.J.: Reactive species formed on proteins exposed to singlet oxygen. Photochem. Photobiol. Sci. 3, 17–25 (2004)
Article
CAS
Google Scholar
Davies, M.J.: The oxidative environment and protein damage. Biochim. Biophys. Acta 1703, 93–109 (2005)
Article
CAS
Google Scholar
Lavine, T.F.: Formation, resolution, and optical properties of the diastereoisomeric sulfoxides derived from L-methionine. J. Biol. Chem. 169, 477–491 (1947)
CAS
Google Scholar
Vogt, W.: Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic. Biol. Med. 18, 93–105 (1995)
Article
CAS
Google Scholar
Nielsen, H.K., Löliger, J., Hurrell, R.F.: Reactions of proteins with oxidizing lipids. 1. Analytical measurements of lipid oxidation and of amino acid losses in a whey protein-methyl linolenate model system. Br. J. Nutr. 53, 61–73 (1985)
Article
CAS
Google Scholar
Valley, C.C., Cembran, A., Perlmutter, J.D., Lewis, A.K., Labello, N.P., Gao, J., Sachs, J.N.: The methionine-aromatic motif plays a unique role in stabilizing protein structure. J. Biol. Chem. 287, 34979–34991 (2012)
Article
CAS
Google Scholar
Brot, N., Weissbach, L., Werth, J., Weissbach, H.: Enzymic reduction of protein-bound methionine sulfoxide. Proc. Natl. Acad. Sci. U. S. A. 78, 2155–2158 (1981)
Article
CAS
Google Scholar
Caldwell, P., Luk, D.C., Weissbach, H., Brot, N.: Oxidation of the methionine residues of Escherichia coli ribosomal protein L12 decreases the protein's biological activity. Proc. Natl. Acad. Sci. U. S. A. 75, 5349–5352 (1978)
Article
CAS
Google Scholar
Sacksteder, C.A., Whittier, J.E., Xiong, Y., Li, J., Galeva, N.A., Jacoby, M.E., Purvine, S.O., Williams, T.D., Rechsteiner, M.C., Bigelow, D.J., Squier, T.C.: Tertiary structural rearrangements upon oxidation of methionine145 in calmodulin promotes targeted proteasomal degradation. Biophys. J. 91, 1480–1493 (2006)
Article
CAS
Google Scholar
Chao, C.-C., Ma, Y.-S., Stadtman, E.R.: Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems. Proc. Natl. Acad. Sci. U. S. A. 94, 2969–2974 (1997)
Article
CAS
Google Scholar
Garner, B., Waldeck, A.R., Witting, P.K., Rye, K.-A., Stocker, R.: Oxidation of high density lipoproteins II. Evidence for direct reduction of lipid hydroperoxides by methionine residues of apolipoproteins AI and AII. J. Biol. Chem. 273, 6088–6095 (1998)
Article
CAS
Google Scholar
Levine, R.L., Mosoni, L., Berlett, B.S., Stadtman, E.R.: Methionine residues as endogenous antioxidants in proteins. Proc. Natl. Acad. Sci. U. S. A. 93, 15036–15040 (1996)
Article
CAS
Google Scholar
Glaser, C., Schoeneich, C.: Special Issue: Methionine oxidation and methionine sulfoxide reductases. Elsevier B.V, Amsterdam, The Netherlands (2005) [In: Biochim. Biophys. Acta; 2005, 1703(2)]
Google Scholar
Brot, N., Weissbach, H.: Biochemistry and physiological role of methionine sulfoxide residues in proteins. Arch. Biochem. Biophys. 223, 271–281 (1983)
Article
CAS
Google Scholar
Grimaud, R., Ezraty, B., Mitchell, J.K., Lafitte, D., Briand, C., Derrick, P.J., Barras, F.: Repair of oxidized proteins: identification of a new methionine sulfoxide reductase. J. Biol. Chem. 276, 48915–48920 (2001)
Article
CAS
Google Scholar
Drazic, A., Miura, H., Peschek, J., Le, Y., Bach, N.C., Kriehuber, T., Winter, J.: Methionine oxidation activates a transcription factor in response to oxidative stress. Proc. Natl. Acad. Sci. U. S. A. 110, 9493–9498 (2013)
Article
Google Scholar
Erickson, J.R., Joiner, M.-lA., Guan, X., Kutschke, W., Yang, J., Oddis, C.V., Bartlett, R.K., Lowe, J.S., O'Donnell, S.E., Aykin-Burns, N., Zimmerman, M.C., Zimmerman, K., Ham, A.-J.L., Weiss, R.M., Spitz, D.R., Shea, M.A., Colbran, R.J., Mohler, P.J., Anderson, M.E.: A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133, 462–474 (2008)
Pattison, D.I., Davies, M.J.: Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem. Res. Toxicol. 14, 1453–1464 (2001)
Article
CAS
Google Scholar
Peskin, A.V., Winterbourn, C.C.: Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic. Biol. Med. 30, 572–579 (2001)
Article
CAS
Google Scholar
Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B.: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms, and hydroxyl radicals (·OH/·O–) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886 (1988)
Article
CAS
Google Scholar
Matheson, I.B.C., He, J.: Chemical reaction rates of amino acids with singlet oxygen. photochem. Photobiology 29, 879–881 (1979)
Article
CAS
Google Scholar
Miskoski, S., Garcia, N.A.: Influence of the peptide bond on the singlet molecular oxygen-mediated (O2[1Δ]) photooxidation of histidine and methionine dipeptides. A kinetic study. Photochem. Photobiol. 57, 447–452 (1993)
Article
CAS
Google Scholar
Sysak, P.K., Foote, C.S., Ching, T.-Y.: Chemistry of Singlet Oxygen. XXV. Photooxygenation of methionine. Photochem. Photobiol. 26, 19–27 (1977)
Article
CAS
Google Scholar
Schweitzer, C., Schmidt, R.: Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 103, 1685–1757 (2003)
Article
CAS
Google Scholar
Weil, L., Gordon, W.G., Buchert, A.R.: Photooxidation of amino acids in the presence of methylene blue. Arch. Biochem. 33, 90–109 (1951)
Article
CAS
Google Scholar
Spikes, J.D., MacKnight, M.L.: Dye-sensitized photooxidation of proteins. Ann. N. Y. Acad. Sci. 171, 149–162 (1970)
Article
CAS
Google Scholar
Cohen, S.G., Ojanpera, S.: Photooxidation of methionine and related compounds. J. Am. Chem. Soc. 97, 5633–5634 (1975)
Article
CAS
Google Scholar
Rougee, M., Bensasson, R.V., Land, E.J., Pariente, R.: Deactivation of singlet molecular oxygen by thiols and related compounds, possible protectors against skin photosensitivity. Photochem. Photobiol. 47, 485–489 (1988)
Article
CAS
Google Scholar
Bertolotti, S.G., Garcia, N.A., Arguello, G.A.: Effects of the peptide bond on the singlet-molecular-oxygen-mediated sensitized photo-oxidation of tyrosine and tryptophan dipeptides. A kinetic study. J. Photochem. Photobiol. B 10, 57–70 (1991)
Article
CAS
Google Scholar
Stadtman, E.R., Berlett, B.S.: Free-Radical-Mediated Modification of Proteins. In: Wallace, K.B. (ed.) Free Radical Toxicology, pp. 71–87. Taylor & Francis, Washington, DC (1997)
Google Scholar
Frimer, A.A.: Singlet O2. Vol III. Reaction Modes and Products, Part 2. CRC Press, Boca Raton, FL (1985)
Google Scholar
Choudhury, R., Greer, A.: Synergism between airborne singlet oxygen and a trisubstituted olefin sulfonate for the inactivation of bacteria. Langmuir 30, 3599–3605 (2014)
Article
CAS
Google Scholar
Bartusik, D., Aebisher, D., Ghafari, B., Lyons, A.M., Greer, A.: Generating singlet oxygen bubbles: a new mechanism for gas-liquid oxidations in water. Langmuir 28, 3053–3060 (2012)
Article
CAS
Google Scholar
Fang, Y., Liu, F., Bennett, A., Ara, S., Liu, J.: Experimental and trajectory study on reaction of protonated methionine with electronically excited singlet molecular oxygen (a1Δg): reaction dynamics and collision energy effects. J. Phys. Chem. B 115, 2671–2682 (2011)
Article
CAS
Google Scholar
Liu, F., Liu, J.: Oxidation dynamics of methionine with singlet oxygen: effects of methionine ionization and microsolvation. J. Phys. Chem. B 119, 8001–8012 (2015)
Article
CAS
Google Scholar
Bonchio, M., Licini, G., Modena, G., Bortolini, O., Moro, S., Nugent, W.A.: Enantioselective Ti(IV) sulfoxidation catalysts bearing C3-symmetric trialkanolamine ligands: solution speciation by 1H NMR and ESI-MS analysis. J. Am. Chem. Soc. 121, 6258–6268 (1999)
Article
CAS
Google Scholar
Kang, Y.-B., Gade, L.H.: The nature of the catalytically active species in olefin dioxygenation with Phi(Oac)2: metal or proton? J. Am. Chem. Soc. 133, 3658–3667 (2011)
Article
CAS
Google Scholar
Santos, L.S. (ed.): Reactive Intermediates: MS Investigations in Solution. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2010)
Google Scholar
Yamashita, M., Fenn, J.B.: Negative ion production with the electrospray ion source. J. Phys. Chem. 88, 4671–4675 (1984)
Article
CAS
Google Scholar
Wampler, F.M., Blades, A.T., Kebarle, P.: Negative ion electrospray mass spectrometry of nucleotides: ionization from water solution with SF6 discharge suppression. J. Am. Soc. Mass Spectrom. 4, 289–295 (1993)
Article
CAS
Google Scholar
Midey, A., Dotan, I., Viggiano, A.A.: Temperature dependences for the reactions of O– and O2
– with O2(a1Δg) from 200 to 700 K. J. Phys. Chem. A 112, 3040–3045 (2008)
Article
CAS
Google Scholar
Liu, F., Fang, Y., Chen, Y., Liu, J.: Dissociative excitation energy transfer in the reactions of protonated cysteine and tryptophan with electronically excited singlet molecular oxygen (a1Δg). J. Phys. Chem. B 115, 9898–9909 (2011)
Article
CAS
Google Scholar
Lafferty, W.J., Solodov, A.M., Lugez, C.L., Fraser, G.T.: Rotational line strengths and self-pressure-broadening coefficients for the 1.27 μm, a1Δg-X3Σg
–, V = 0-0 Band of O2. Appl. Opt. 37, 2264–2270 (1998)
Article
CAS
Google Scholar
Lee, E.D., Muck, W., Henion, J.D., Covey, T.R.: Real-time reaction monitoring by continuous-introduction ion-spray tandem mass spectrometry. J. Am. Chem. Soc. 111, 4600–4604 (1989)
Article
CAS
Google Scholar
Fürmeier, S., Metzger, J.O.: Detection of transient radical cations in electron transfer-initiated Diels-Alder reactions by electrospray ionization mass spectrometry. J. Am. Chem. Soc. 126, 14485–14492 (2004)
Article
CAS
Google Scholar
Fabris, D.: Mass spectrometric approaches for the investigation of dynamic processes in condensed phase. Mass Spectrom. Rev. 24, 30–54 (2005)
Article
CAS
Google Scholar
Amarante, G.W., Benassi, M., Milagre, H.M.S., Braga, A.A.C., Maseras, F., Eberlin, M.N., Coelho, F.: Brønsted acid catalyzed Morita–Baylis–Hillman reaction: a new mechanistic view for thioureas revealed by ESI-MS(/MS) monitoring and DFT calculations. Chem. Eur. J. 15, 12460–12469 (2009)
Article
CAS
Google Scholar
Huvaere, K., Sinnaeve, B., Bocxlaer, J.V., Skibsted, L.H.: Flavonoid deactivation of excited state flavins: reaction monitoring by mass spectrometry. J. Agric. Food Chem. 60, 9261–9272 (2012)
Article
CAS
Google Scholar
Yunker, L.P.E., Stoddard, R.L., McIndoe, J.S.: Practical approaches to the ESI-MS analysis of catalytic reactions. J. Mass Spectrom. 49, 1–8 (2014)
Article
CAS
Google Scholar
Yan, X., Sokol, E., Li, X., Li, G., Xu, S., Cooks, R.G.: On-line reaction monitoring and mechanistic studies by mass spectrometry: Negishi cross-coupling, hydrogenolysis, and reductive amination. Angew. Chem. Int. Ed. 53, 5931–5935 (2014)
Article
CAS
Google Scholar
Liu, F., Lu, W., Fang, Y., Liu, J.: Evolution of oxidation dynamics of histidine: non-reactivity in the gas phase, peroxides in hydrated clusters, and pH dependecne in solution. Phys. Chem. Chem. Phys. 16, 22179–22191 (2014)
Article
CAS
Google Scholar
Cassou, C.A., Sterling, H.J., Susa, A.C., Williams, E.R.: Electrothermal supercharging in mass spectrometry and tandem mass spectrometry of native proteins. Anal. Chem. 85, 138–146 (2013)
Article
CAS
Google Scholar
Mark, L.P., Gill, M.C., Mahut, M., Derrick, P.J.: Dual nano-electrospray for probing solution interactions and fast reactions of complex biomolecules. Eur. J. Mass Spectrom. 18, 439–466 (2012)
Article
CAS
Google Scholar
Fisher, C.M., Kharlamova, A., McLuckey, S.A.: Affecting protein charge state distributions in nano-electrospray ionization via in-spray solution mixing using Theta capillaries. Anal. Chem. 86, 4581–4588 (2014)
Article
CAS
Google Scholar
Mortensen, D.N., Williams, E.R.: Theta-glass capillaries in electrospray ionization: rapid mixing and short droplet lifetimes. Anal. Chem. 86, 9315–9321 (2014)
Article
CAS
Google Scholar
Fang, Y., Liu, J.: Reaction of protonated tyrosine with electronically excited singlet molecular oxygen (a1Δg): an experimental and trajectory study. J. Phys. Chem. A 113, 11250–11261 (2009)
Article
CAS
Google Scholar
Armentrout, P.B.: Fundamental of ion-molecule chemistry. J. Anal. At. Spectrom. 19, 571–580 (2004)
Article
CAS
Google Scholar
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision D.01. Gaussian, Inc, Wallingford, CT (2013)
Google Scholar
Tomasi, J., Mennucci, B., Cammi, R.: Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3093 (2005)
Article
CAS
Google Scholar
Zou, X., Zhao, H., Yu, Y., Su, H.: Formation of guanine-6-sulfonate from 6-thioguanine and singlet oxygen: a combined theoretical and experimental study. J. Am. Chem. Soc. 135, 4509–4515 (2013)
Article
CAS
Google Scholar
Munk, B.H., Burrows, C.J., Schlegel, H.B.: An exploration of mechanisms for the transformation of 8-oxoguanine to guanidinohydantoin and spiroiminodihydantoin by density functional theory. J. Am. Chem. Soc. 130, 5245–5256 (2008)
Article
CAS
Google Scholar
Alecu, I.M., Zheng, J., Zhao, Y., Truhlar, D.G.: Computational thermochemistry: scale factor databases and scale factors for vibrational requencies obtained from electronic model chemistries. J. Chem. Theory Comput. 6, 2872–2887 (2010)
Article
CAS
Google Scholar
Skovsen, E., Snyder, J.W., Lambert, J.D.C., Ogilby, P.R.: Lifetime and diffusion of singlet oxygen in a cell. J. Phys. Chem. B 109, 8570–8573 (2005)
Article
CAS
Google Scholar
Lindig, B.A., Rodgers, M.A.J., Schaap, A.P.: Determination of the lifetime of singlet oxygen in D2O using 9,10-anthracenedipropionic acid, a water-soluble probe. J. Am. Chem. Soc. 102, 5590–5593 (1980)
Article
CAS
Google Scholar
Kanofsky, J.R.: Quenching of singlet oxygen by human plasma. Photochem. Photobiol. 51, 299–303 (1990)
Article
CAS
Google Scholar
Fischer, F., Graschew, G., Sinn, H.J., Maier-Borstl, W., Lorenzl, W.J., Schlag, P.M.: A chemical dosimeter for the determination of the photodynamic activity of photosensitizers. Clin. Chim. Acta 274, 89–104 (1998)
Article
CAS
Google Scholar
Montaña, M.P., Massad, W.A., Amat-Guerri, F., García, N.A.: Scavenging of riboflavin-photogenerated oxidative species by uric acid, xanthine or hypoxanthine: a kinetic study. J. Photochem. Photobiol. A 193, 103–109 (2008)
Article
CAS
Google Scholar
Krasnovsky, A.A., Kozlov, A.S., Roumbal, Y.V.: Photochemical investigation of the IR absorption bands of molecular oxygen in organic and aqueous environment. Photochem. Photobiol. Sci. 11, 988–997 (2012)
Article
CAS
Google Scholar
Rabello, B.R., Gerola, A.P., Pellosi, D.S., Tessaro, A.L., Aparício, J.L., Caetano, W., Hioka, N.: Singlet oxygen dosimetry using uric acid as a chemical probe: systematic evaluation. J. Photochem. Photobiol. A 238, 53–62 (2012)
Article
CAS
Google Scholar
Voet, D., Voet, J.G., Pratt, C.W.: Fundamentals Biochemistry (Upgrade Edition). John Wiley & Sons, Inc., Hoboken, NJ (2002)
Google Scholar
Block, E., O’Connor, J.: Chemistry of alkyl thiosulfinate esters. VI. Preparation and spectral studies. J. Am. Chem. Soc. 96, 3921–3929 (1974)
Article
CAS
Google Scholar
Foote, C.S., Peters, J.W.: Chemistry of singlet oxygen. XIV. Reactive Intermediate in sulfide photooxidation. J. Am. Chem. Soc. 93, 3795–3796 (1971)
Article
CAS
Google Scholar
Liang, J.J., Gu, C.L., Kacher, M.L., Foote, C.S.: Chemistry of singlet oxygen. 45. Mechanism of the photooxidation of sulfides. J. Am. Chem. Soc. 105, 4717–4721 (1983)
Article
CAS
Google Scholar
Steinfeld, J.I., Francisco, J.S., Hase, W.L.: Chemcial Kinetcis and Dynamics, 2nd edn. Prentice Hall, Upper Saddle River, NJ (1999)
Google Scholar
Clennan, E.L.: Persulfoxide: key intermediate in reactions of singlet oxygen with sulfides. Acc. Chem. Res. 34, 875–884 (2001)
Article
CAS
Google Scholar
Silbey, R.J., Alberty, R.A., Bawendi, M.G. Physical Chemistry, 4th ed. Wiley, Hoboken, NJ (2005)
Kraljic, I., Sharpatyi, V.A.: Determination of singlet oxygen rate constants in aqueous solutions. Photochem. Photobiol. 28, 583–586 (1978)
Article
CAS
Google Scholar
Lindig, B.A., Rodgers, M.A.J.: Rate parameters for the quenching of singlet oxygen by water-soluble and lipid-soluble substrates in aqueous and micellar systems. Photochem. Photobiol. 33, 627–634 (1981)
Article
CAS
Google Scholar
Weil, L.: On the mechanism of the photo-oxidation of amino acids sensitized by methylene blue. Arch. Biochem. Biophys. 110, 57–68 (1965)
Article
CAS
Google Scholar
Straight, R., Spikes, J.D.: Sensitized photooxidation of amino acids: effects on the reactivity of their primary amine groups with fluorescamine and O-phthalaldehyde. Photochem. Photobiol. 27, 565–569 (1978)
Article
CAS
Google Scholar