Advertisement

Novel isotopic N,N-Dimethyl Leucine (iDiLeu) Reagents Enable Absolute Quantification of Peptides and Proteins Using a Standard Curve Approach

  • Tyler Greer
  • Christopher B. Lietz
  • Feng Xiang
  • Lingjun Li
Research Article

Abstract

Absolute quantification of protein targets using liquid chromatography-mass spectrometry (LC-MS) is a key component of candidate biomarker validation. One popular method combines multiple reaction monitoring (MRM) using a triple quadrupole instrument with stable isotope-labeled standards (SIS) for absolute quantification (AQUA). LC-MRM AQUA assays are sensitive and specific, but they are also expensive because of the cost of synthesizing stable isotope peptide standards. While the chemical modification approach using mass differential tags for relative and absolute quantification (mTRAQ) represents a more economical approach when quantifying large numbers of peptides, these reagents are costly and still suffer from lower throughput because only two concentration values per peptide can be obtained in a single LC-MS run. Here, we have developed and applied a set of five novel mass difference reagents, isotopic N,N-dimethyl leucine (iDiLeu). These labels contain an amine reactive group, triazine ester, are cost effective because of their synthetic simplicity, and have increased throughput compared with previous LC-MS quantification methods by allowing construction of a four-point standard curve in one run. iDiLeu-labeled peptides show remarkably similar retention time shifts, slightly lower energy thresholds for higher-energy collisional dissociation (HCD) fragmentation, and high quantification accuracy for trypsin-digested protein samples (median errors <15%). By spiking in an iDiLeu-labeled neuropeptide, allatostatin, into mouse urine matrix, two quantification methods are validated. The first uses one labeled peptide as an internal standard to normalize labeled peptide peak areas across runs (<19% error), whereas the second enables standard curve creation and analyte quantification in one run (<8% error).

Graphical Abstract

Keywords

Protein/peptide quantification iDiLeu DiLeu Absolute quantification Isotopic labeling Standard curve Dimethylated amino acid 

Notes

Acknowledgments

The authors acknowledge support for this work by the National Institutes of Health grant (1R01DK071801). The Q-Exactive Orbitrap and Orbitrap Elite instruments were purchased through the support of an NIH shared instrument grant (NIH-NCRR S10RR029531). C.B.L. acknowledges an NIH-supported Chemistry Biology Interface Training Program Predoctoral Fellowship grant (T32-GM008505) and an NSF Graduate Research Fellowship (DGE-1256259). L.L. acknowledges a H. I. Romnes Faculty Research Fellowship. The authors also acknowledge the generous gifts of yeast protein extracts from Promega (Madison, WI), mouse urine samples from the Paul Marker group at UW-Madison, and TMT0 reagent from Thermo Fisher (Rockford, IL).

Supplementary material

13361_2014_1012_MOESM1_ESM.docx (355 kb)
ESM 1 (DOCX 354 kb)

References

  1. 1.
    Huttenhain, R., Malmstrom, J., Picotti, P., Aebersold, R.: Perspectives of targeted mass spectrometry for protein biomarker verification. Curr. Opin. Chem. Biol. 13, 518–525 (2009)CrossRefGoogle Scholar
  2. 2.
    Makawita, S., Diamandis, E.P.: The bottleneck in the cancer biomarker pipeline and protein quantification through mass spectrometry-based approaches: current strategies for candidate verification. Clin. Chem. 56, 212–222 (2010)CrossRefGoogle Scholar
  3. 3.
    Rifai, N., Gillette, M.A., Carr, S.A.: Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol. 24, 971–983 (2006)CrossRefGoogle Scholar
  4. 4.
    Addona, T.A., Shi, X., Keshishian, H., Mani, D.R., Burgess, M., Gillette, M.A., Clauser, K.R., Shen, D., Lewis, G.D., Farrell, L.A., Fifer, M.A., Sabatine, M.S., Gerszten, R.E., Carr, S.A.: A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease. Nat. Biotechnol. 29, 635–643 (2011)CrossRefGoogle Scholar
  5. 5.
    Barr, J.R., Maggio, V.L., Patterson, D.G., Cooper, G.R., Henderson, L.O., Turner, W.E., Smith, S.J., Hannon, W.H., Needham, L.L., Sampson, E.J.: Isotope dilution-mass spectrometric quantification of specific proteins: model application with apolipoprotein A-I. Clin. Chem. 42, 1676–1682 (1996)Google Scholar
  6. 6.
    Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W., Gygi, S.P.: Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. U. S. A. 100, 6940–6945 (2003)CrossRefGoogle Scholar
  7. 7.
    Kirkpatrick, D.S., Gerber, S.A., Gygi, S.P.: The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35, 265–273 (2005)CrossRefGoogle Scholar
  8. 8.
    Zhao, Y., Brasier, A.R.: Applications of selected reaction monitoring (SRM)-mass spectrometry (MS) for quantitative measurement of signaling pathways. Methods 61, 313–322 (2013)CrossRefGoogle Scholar
  9. 9.
    Warnken, U., Schleich, K., Schnölzer, M., Lavrik, I.: Quantification of high-molecular weight protein platforms by AQUA mass spectrometry as exemplified for the CD95 death-inducing signaling complex (DISC). Cells 2, 476–495 (2013)CrossRefGoogle Scholar
  10. 10.
    Wildsmith, K.R., Schauer, S.P., Smith, A.M., Arnott, D., Zhu, Y., Haznedar, J., Kaur, S., Mathews, W.R., Honigberg, L.A.: Identification of longitudinally dynamic biomarkers in alzheimer’s disease cerebrospinal fluid by targeted proteomics. Mol. Neurodegener. 9, 22 (2014)CrossRefGoogle Scholar
  11. 11.
    Kuzyk, M.A., Smith, D., Yang, J., Cross, T.J., Jackson, A.M., Hardie, D.B., Anderson, N.L., Borchers, C.H.: Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol. Cell. Proteomics 8, 1860–1877 (2009)CrossRefGoogle Scholar
  12. 12.
    Sturm, R., Sheynkman, G., Booth, C., Smith, L.M., Pedersen, J.A., Li, L.: Absolute quantification of prion protein (90-231) using stable isotope-labeled chymotryptic peptide standards in a LC-MRM AQUA workflow. J. Am. Soc. Mass Spectrom. 23, 1522–1533 (2012)CrossRefGoogle Scholar
  13. 13.
    Robinson, R.A.S., Evans, A.R.: Enhanced sample multiplexing for nitrotyrosine-modified proteins using combined precursor isotopic labeling and isobaric tagging. Anal. Chem. 84, 4677–4686 (2012)CrossRefGoogle Scholar
  14. 14.
    DeSouza, L.V., Taylor, A.M., Li, W., Minkoff, M.S., Romaschin, A.D., Colgan, T.J., Siu, K.W.M.: Multiple reaction monitoring of mTRAQ-labeled peptides enables absolute quantification of endogenous levels of a potential cancer marker in cancerous and normal endometrial tissues. J. Proteome Res. 7, 3525–3534 (2008)CrossRefGoogle Scholar
  15. 15.
    DeSouza, L.V., Romaschin, A.D., Colgan, T.J., Siu, K.W.M.: Absolute quantification of potential cancer markers in clinical tissue homogenates using multiple reaction monitoring on a hybrid triple quadrupole/linear ion trap tandem mass spectrometer. Anal. Chem. 81, 3462–3470 (2009)CrossRefGoogle Scholar
  16. 16.
    Zhou, L., Wei, R., Zhao, P., Koh, S.K., Beuerman, R.W., Ding, C.: Proteomic analysis revealed the altered tear protein profile in a rabbit model of Sjögren’s syndrome-associated dry eye. Proteomics 13, 2469–2481 (2013)CrossRefGoogle Scholar
  17. 17.
    Zhang, S., Wen, B., Zhou, B., Yang, L., Cha, C., Xu, S., Qiu, X., Wang, Q., Sun, H., Lou, X., Zi, J., Zhang, Y., Lin, L., Liu, S.: Quantitative analysis of the human AKR family members in cancer cell lines using the mTRAQ/MRM approach. J. Proteome Res. 12, 2022–2033 (2013)CrossRefGoogle Scholar
  18. 18.
    Yin, H., Zhang, L., Xie, L., Huang, L.: Hyperplex-MRM: a hybrid multiple reaction monitoring method using mTRAQ/iTRAQ labeling for multiplex absolute quantification of human colorectal cancer. J. Proteome Res. 12, 3912–3919 (2013)CrossRefGoogle Scholar
  19. 19.
    Yoon, J.Y., Yeom, J., Lee, H., Kim, K., Na, S., Park, K., Paek, E., Lee, C.: High-throughput peptide quantification using mTRAQ reagent triplex. BMC Bioinformatics 12(Suppl 1), S46 (2011)CrossRefGoogle Scholar
  20. 20.
    DeSouza, L.V., Krakovska, O., Darfler, M.M., Krizman, D.B., Romaschin, A.D., Colgan, T.J., Siu, K.W.M.: mTRAQ-based quantification of potential endometrial carcinoma biomarkers from archived formalin-fixed paraffin-embedded tissues. Proteomics 10, 3108–3116 (2010)CrossRefGoogle Scholar
  21. 21.
    Hwang, C.Y., Kim, K., Choi, J.Y., Bahn, Y.J., Lee, S.-M., Kim, Y.K., Lee, C., Kwon, K.-S.: Quantitative proteome analysis of age-related changes in mouse gastrocnemius muscle using mTRAQ. Proteomics 14, 121–132 (2014)CrossRefGoogle Scholar
  22. 22.
    Carneiro, L.G., Nouh, H., Salih, E.: Quantitative gingival crevicular fluid proteome in health and periodontal disease using stable isotope chemistries and mass spectrometry. J. Clin. Periodontol. 41, 733–747 (2014)Google Scholar
  23. 23.
    Mertins, P., Udeshi, N.D., Clauser, K.R., Mani, D.R., Patel, J., Ong, S., Jaffe, J.D., Carr, S.A.: iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics. Mol. Cell. Proteomics 11, M111.014423, 1–12 (2012)Google Scholar
  24. 24.
    Wu, Y., Wang, F., Liu, Z., Qin, H., Song, C., Huang, J., Bian, Y., Wei, X., Dong, J., Zou, H.: Five-plex isotope dimethyl labeling for quantitative proteomics. Chem. Commun. (Camb.) 50, 1708–1710 (2014)CrossRefGoogle Scholar
  25. 25.
    Xiang, F., Ye, H., Chen, R., Fu, Q., Li, L.: N,N-dimethyl leucines as novel isobaric tandem mass tags for quantitative proteomics and peptidomics. Anal. Chem. 82, 2817–2825 (2010)CrossRefGoogle Scholar
  26. 26.
    Lietz, C.B., Yu, Q., Li, L.: Large-scale collision cross-section profiling on a traveling wave ion mobility mass spectrometer. J. Am. Soc. Mass Spectrom. (2014). doi: 10.1007/s13361–014–0920–1 Google Scholar
  27. 27.
    Wenger, C.D., Phanstiel, D.H., Lee, M.V., Bailey, D.J., Coon, J.J.: COMPASS: a suite of pre- and post-search proteomics software tools for OMSSA. Proteomics 11, 1064–1074 (2011)CrossRefGoogle Scholar
  28. 28.
    Shadforth, I.P., Dunkley, T.P.J., Lilley, K.S., Bessant, C.: I-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics 6, 145 (2005)CrossRefGoogle Scholar
  29. 29.
    Pichler, P., Köcher, T., Holzmann, J., Mazanek, M., Taus, T., Ammerer, G., Mechtler, K.: Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-Plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ Orbitrap. Anal. Chem. 82, 6549–6558 (2010)CrossRefGoogle Scholar
  30. 30.
    Zhang, R., Sioma, C.S., Thompson, R.A., Xiong, L., Regnier, F.E.: Controlling deuterium isotope effects in comparative proteomics. Anal. Chem. 74, 3662–3669 (2002)CrossRefGoogle Scholar
  31. 31.
    Boutilier, J.M., Warden, H., Doucette, A.A., Wentzell, P.D.: Chromatographic behavior of peptides following dimethylation with H2/D2-formaldehyde: implications for comparative proteomics. J. Chromatogr. B. 908, 59–66 (2012)Google Scholar
  32. 32.
    Peterson, A.C., Russell, J.D., Bailey, D.J., Westphall, M.S., Coon, J.J.: Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell. Proteomics 11, 1475–1488 (2012)CrossRefGoogle Scholar
  33. 33.
    Gallien, S., Duriez, E., Crone, C., Kellmann, M., Moehring, T., Domon, B.: Targeted proteomic quantification on quadrupole-Orbitrap mass spectrometer. Mol. Cell. Proteomics 11, 1709–1723 (2012)CrossRefGoogle Scholar
  34. 34.
    Tsuchiya, H., Tanaka, K., Saeki, Y.: The parallel reaction monitoring method contributes to a highly sensitive polyubiquitin chain quantification. Biochem. Biophys. Res. Commun. 436, 223–229 (2013)CrossRefGoogle Scholar
  35. 35.
    Maerkens, A., Kley, R.A., Olive, M., Theis, V., van der Ven, P.F.M., Reimann, J., Milting, H., Schreiner, A., Uszkoreit, J., Eisenacher, M., Barkovits, K., Guettsches, A.K., Tonillo, J., Kuhlmann, K., Meyer, H.E., Schroeder, R., Tegenthoff, M., Fuerst, D.O., Mueller, T., Goldfarb, L.G., Vorgerd, M., Marcus, K.: Differential proteomic analysis of abnormal intramyoplasmic aggregates in desminopathy. J. Proteome 90, 14–27 (2013)CrossRefGoogle Scholar
  36. 36.
    Zarth, A.T., Cheng, G., Zhang, Z., Wang, M., Villalta, P.W., Balbo, S., Hecht, S.S.: Analysis of the benzene oxide-DNA adduct 7-phenylguanine by liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry-parallel reaction monitoring: application to DNA from exposed mice and humans. Chem. Biol. Interact. 215, 40–45 (2014)CrossRefGoogle Scholar
  37. 37.
    Tang, H., Fang, H., Yin, E., Brasier, A.: Multiplexed parallel reaction monitoring (PRM) targets histone modifications on the Q-Exactive mass spectrometer. Anal. Chem. 86, 5526–5534 (2014)CrossRefGoogle Scholar
  38. 38.
    Sturm, R.M., Lietz, C.B., Li, L.: Improved isobaric tandem mass tag quantification by ion mobility mass spectrometry. Rapid Commun. Mass Spectrom. 28, 1051–1060 (2014)CrossRefGoogle Scholar
  39. 39.
    Ting, L., Rad, R., Gygi, S.P., Haas, W.: MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat. Methods 8, 937–940 (2011)CrossRefGoogle Scholar
  40. 40.
    Wenger, C.D., Lee, M.V., Hebert, A.S., McAlister, G.C., Phanstiel, D.H., Westphall, M.S., Coon, J.J.: Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging. Nat. Methods 8, 933–935 (2011)CrossRefGoogle Scholar
  41. 41.
    McAlister, G.C., Nusinow, D.P., Jedrychowski, M.P., Wühr, M., Huttlin, E.L., Erickson, B.K., Rad, R., Haas, W., Gygi, S.P.: MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal. Chem. 86, 7150–7158 (2014)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2014

Authors and Affiliations

  • Tyler Greer
    • 1
  • Christopher B. Lietz
    • 1
  • Feng Xiang
    • 2
  • Lingjun Li
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.School of PharmacyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations