Abstract
Legumes have developed the unique ability to establish a symbiotic relationship with soil bacteria known as rhizobia. This interaction results in the formation of root nodules in which rhizobia thrive and reduce atmospheric dinitrogen into plant-usable ammonium through biological nitrogen fixation (BNF). Owing to the availability of genetic information for both of the symbiotic partners, the Medicago truncatula–Sinorhizobium meliloti association is an excellent model for examining the BNF process. Although metabolites are important in this symbiotic association, few studies have investigated the array of metabolites that influence this process. Of these studies, most target only a few specific metabolites, the roles of which are either well known or are part of a well-characterized metabolic pathway. Here, we used a multifaceted mass spectrometric (MS) approach to detect and identify the key metabolites that are present during BNF using the Medicago truncatula–Sinorhizobium meliloti association as the model system. High mass accuracy and high resolution matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) Orbitrap instruments were used in this study and provide complementary results for more in-depth characterization of the nitrogen-fixation process. We used well-characterized plant and bacterial mutants to highlight differences between the metabolites that are present in functional versus nonfunctional nodules. Our study highlights the benefits of using a combination of mass spectrometric techniques to detect differences in metabolite composition and the distributions of these metabolites in plant biology.

ᅟ
This is a preview of subscription content, access via your institution.



References
Hoffman, B.M., Lukoyanov, D., Yang, Z.Y., Dean, D.R., Seefeldt, L.C.: Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114(8), 4041–4062 (2014)
Ferguson, B.J., Indrasumunar, A., Hayashi, S., Lin, M.H., Lin, Y.H., Reid, D.E., Gresshoff, P.M.: Molecular analysis of legume nodule development and autoregulation. J. Integr. Plant Biol. 52(1), 61–76 (2010)
Lau, W., Fischbach, M.A., Osbourn, A., Sattely, E.S.: Key applications of plant metabolic engineering. PLoS Biol. 12(6), e1001879 (2014)
Graham, P.H., Vance, C.P.: Legumes: importance and constraints to greater use. Plant Physiol. 131(3), 872–877 (2003)
Dunn, M.F.: Key roles of microsymbiont amino acid metabolism in rhizobia–legume interactions. Crit. Rev. Microbiol (2014). doi:10.3109/1040841X.2013.856854
Udvardi, M., Poole, P.S.: Transport and metabolism in legume-rhizobia symbioses. Annu. Rev. Plant Biol. 64, 781–805 (2013)
Cook, D.: Medicago truncatula—a model in the making! Comment. Curr. Opin. Plant Biol. 2(4), 301–304 (1999)
Benloch, R., Navarro, C., Beltran, J.P., Canas, L.A.: Floral development of the model legume Medicago truncatula: ontogeny studies as a tool to better characterize homeotic mutations. Sex Plant Reprod. 15(5), 231–241 (2003)
Gallardo, K., Le Signor, C., Vandekerckhove, J., Thompson, R.D., Burstin, J.: Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol. 133(2), 664–682 (2003)
Wang, H.L., Chen, J.H., Wen, J.Q., Tadege, M., Li, G.M., Liu, Y., Mysore, K.S., Ratet, P., Chen, R.J.: Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula. Plant Physiol. 146(4), 1759–1772 (2008)
Branca, A., Paape, T.D., Zhou, P., Briskine, R., Farmer, A.D., Mudge, J., Bharti, A.K., Woodward, J.E., May, G.D., Gentzbittel, L., Ben, C., Denny, R., Sadowsky, M.J., Ronfort, J., Bataillon, T., Young, N.D., Tiffin, P.: Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc. Natl. Acad. Sci. U. S. A. 108(42), E864–E870 (2011)
Samac, D.A., Penuela, S., Schnurr, J.A., Hunt, E.N., Foster-Hartnett, D., Vandenbosch, K.A., Gantt, J.S.: Expression of coordinately regulated defence response genes and analysis of their role in disease resistance in Medicago truncatula. Mol. Plant Pathol. 12(8), 786–798 (2011)
Rasmussen, S., Parsons, A.J., Jones, C.S.: Metabolomics of forage plants: a review. Ann. Bot. 110(6), 1281–1290 (2012)
Venkateshwaran, M., Volkening, J.D., Sussman, M.R., Ané, J.M.: Symbiosis and the social network of higher plants. Curr. Opin. Plant Biol. 16(1), 118–127 (2013)
White, J., Prell, J., James, E.K., Poole, P.: Nutrient sharing between symbionts. Plant Physiol. 144(2), 604–614 (2007)
Draper, J., Rasmussen, S., Zubair, H.: Metabolite analysis and metabolomics in the study of biotrophic interactions between plant and microbes. Annu. Plant Rev. 43, 25–59 (2011)
Desbrosses, G.G., Kopka, J., Udvardi, M.K.: Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant-microbe interactions. Plant Physiol. 137(4), 1302–1318 (2005)
Colebatch, G., Desbrosses, G., Ott, T., Krusell, L., Montanari, O., Kloska, S., Kopka, J., Udvardi, M.K.: Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J. 39(4), 487–512 (2004)
Suzuki, H., Reddy, M.S.S., Naoumkina, M., Aziz, N., May, G.D., Huhman, D.V., Sumner, L.W., Blount, J.W., Mendes, P., Dixon, R.A.: Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic reprogramming in cell suspension cultures of the model legume Medicago truncatula. Planta 220(5), 696–707 (2005)
Farag, M.A., Huhman, D.V., Lei, Z.T., Sumner, L.W.: Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC-UV-ESI-MS and GC-MS. Phytochemistry 68(3), 342–354 (2007)
Farag, M.A., Huhman, D.V., Dixon, R.A., Sumner, L.W.: Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol. 146(2), 387–402 (2008)
Harada, K., Fukusaki, E.: Profiling of primary metabolite by means of capillary electrophoresis-mass spectrometry and its application for plant science. Plant Biotech. 26(1), 47–52 (2009)
Kueger, S., Steinhauser, D., Willmitzer, L., Giavalisco, P.: High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J. 70(1), 39–50 (2012)
Lee, Y.J., Perdian, D.C., Song, Z.H., Yeung, E.S., Nikolau, B.J.: Use of mass spectrometry for imaging metabolites in plants. Plant J. 70(1), 81–95 (2012)
Kaspar, S., Peukert, M., Svatoš, A., Matros, A., Mock, H.P.: MALDI-imaging mass spectrometry—an emerging technique in plant biology. Proteomics 11(9), 1840–1850 (2011)
Gemperline, E., Li, L.: MALDI-mass spectrometric imaging for the investigation of metabolites in Medicago truncatula root nodules. J. Vis. Exp. 85, (2014). doi:10.3791/51434
Ye, H., Gemperline, E., Venkateshwaran, M., Chen, R., Delaux, P.M., Howes-Podoll, M., Ane, J.M., Li, L.: MALDI mass spectrometry-assisted molecular imaging of metabolites during nitrogen fixation in the Medicago truncatula–Sinorhizobium meliloti symbiosis. Plant J. 75(1), 130–145 (2013)
Bjarnholt, N., Li, B., D'Alvise, J., Janfelt, C.: Mass spectrometry imaging of plant metabolites—principles and possibilities. Nat. Prod. Rep. 31(6), 818–837 (2014)
Catoira, R., Galera, C., de Billy, F., Penmetsa, R., Journet, E., Maillet, F., Rosenberg, C., Cook, D., Gough, C., Denarie, J.: Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell 12(9), 1647–1665 (2000)
Oke, V., Long, S.R.: Bacteroid formation in the rhizobium-legume symbiosis. Curr. Opin. Microbiol. 2(6), 641–646 (1999)
Robichaud, G., Garrard, K.P., Barry, J.A., Muddiman, D.C.: MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J. Am. Soc. Mass Spectrom. 24(5), 718–721 (2013)
Wolf, S., Schmidt, S., Muller-Hannemann, M., Neumann, S.: In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 11, (2010). doi:10.1186/1471-2105-11-148
Mitra, R.M., Long, S.R.: Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula–Sinorhizobium meliloti symbiosis. Plant Physiol. 134(2), 595–604 (2004)
Wang, D., Griffitts, J., Starker, C., Fedorova, E., Limpens, E., Ivanov, S., Bisseling, T., Long, S.R.: A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327(5969), 1126–1129 (2010)
Sprent, J.I., James, E.K.: Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiol. 144(2), 575–581 (2007)
Sprent, J. I.: Legume nodulation: a global perspective. pp. 79–94, Wiley-Blackwell, Chichester, U.K. (2009)
Sulieman, S., Tran, L.S.P.: Asparagine: an amide of particular distinction in the regulation of symbiotic nitrogen fixation of legumes. Crit. Rev. Biotechnol. 33(3), 309–327 (2013)
Schulze, J.: Source-sink manipulations suggest an N-feedback mechanism for the drop in N-2 fixation during pod-filling in pea and broad bean. J. Plant Physiol. 160(5), 531–537 (2003)
Fischinger, S.A., Drevon, J.J., Claassen, N., Schulze, J.: Nitrogen from senescing lower leaves of common bean is re-translocated to nodules and might be involved in a N-feedback regulation of nitrogen fixation. J. Plant Physiol. 163(10), 987–995 (2006)
Sulieman, S., Fischinger, S.A., Gresshoff, P.M., Schulze, J.: Asparagine as a major factor in the N-feedback regulation of N-2 fixation in Medicago truncatula. Physiol. Plant. 140(1), 21–31 (2010)
Parsons, R., Stanforth, A., Raven, J.A., Sprent, J.I.: Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen. Plant, Cell Environ. 16(2), 125–136 (1993)
Touraine, B.: Nitrate uptake by roots-transporters and root development. In: Amancio, S., Stulen, I. (eds.) Nitrogen Acquisition and Assimilation in Higher Plants, p. 1–34. Springer Netherlands, Dordrecht (2004)
Schubert, S.: The apoplast of indeterminate legume nodules: compartment for transport of amino acids, amides and sugars. In: Sattelmacher, B., Horst, W.J. (eds.) The Apoplast of Higher Plants: Compartment of Storage, Transport and Reactions, pp. 445–454. Springer Netherlands, Dordrecht (2007)
Boscari, A., Van de Sype, G., Le Rudulier, D., Mandon, K.: Overexpression of BetS, a Sinorhizobium meliloti high-affinity betaine transporter, in bacteroids from Medicago sativa nodules sustains nitrogen fixation during early salt stress adaptation. Mol. Plant-Microbe Interact. 19(8), 896–903 (2006)
Alloing, G., Travers, I., Sagot, B., Le Rudulier, D., Dupont, L.: Proline betaine uptake in Sinorhizobium meliloti: characterization of Prb, an Opp-like ABC transporter regulated by both proline betaine and salinity stress. J. Bacteriol. 188(17), 6308–6317 (2006)
Luyten, E., Vanderleyden, J.: Survey of genes identified in Sinorhizobium meliloti spp., necessary for the development of an efficient symbiosis. Eur. J. Soil Biol 36(1), 1–26 (2000)
Appleby, C.A.: Leghemoglobin and rhizobium respiration. Ann. Rev. Plant Physiol. Plant Mol. Biol. 35, 443–478 (1984)
Acknowledgments
This work was supported by funding from the University of Wisconsin Graduate School and the Wisconsin Alumni Research Foundation (WARF), a Romnes Faculty Research Fellowship program to L.L. and a National Science Foundation (NSF) grant to J.M.A. (NSF#0701846). E.G. acknowledges an NSF Graduate Research Fellowship (DGE-1256259). The MALDI-Orbitrap and Q-Exactive instruments were purchased through an NIH shared instrument grant (NCRR S10RR029531).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(PDF 186 kb)
Rights and permissions
About this article
Cite this article
Gemperline, E., Jayaraman, D., Maeda, J. et al. Multifaceted Investigation of Metabolites During Nitrogen Fixation in Medicago via High Resolution MALDI-MS Imaging and ESI-MS. J. Am. Soc. Mass Spectrom. 26, 149–158 (2015). https://doi.org/10.1007/s13361-014-1010-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13361-014-1010-0
Keywords
- Nitrogen fixation
- Medicago truncatula
- Metabolites
- MALDI
- Orbitrap
- Mass spectrometry
- Imaging
- Q-Exactive