Skip to main content

Advertisement

Log in

Detection of “Bath Salt” Synthetic Cathinones and Metabolites in Urine via DART-MS and Solid Phase Microextraction

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

A rapid and sensitive method, direct analysis in real time mass spectrometry (DART-MS) was applied to the characterization and semiquantitative analysis of synthetic cathinones and their metabolites in urine. DART-MS was capable of detecting three different cathinones and three metabolites down to sub-clinical levels directly without any sample preparations. The process produced a spectrum within seconds because no extraction or derivatization was required for analysis and the high mass accuracy of the instrumentation allowed analysis without the need for lengthy chromatographic separations. The use of solid phase microextration demonstrated a relative increase in the detectability of both drugs and metabolites, improving the detection signal on average more than an order of magnitude over direct detection, while providing cleaner spectra devoid of the major peaks associated with urine that oftentimes dominate such samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gil, D., Adamowicz, P., Skulska, A., Tokarczyk, B., Stanaszek, R.: Analysis of 4-MEC in biological and non-biological material—three case reports. Forensic Sci. Int. 228, e11–e15 (2013)

    Article  CAS  Google Scholar 

  2. United Nations Office of Drug Control (UNODC), World Drug Report 2013 (United Nations publication, Sales No. E.13.XI.6 Available at: http://www.unodc.org/unodc/secured/wdr/wdr2013/World_Drug_Report_2013.pdf; Accessed 5/5/2014

  3. Prosser, J.M., Nelson, L.S.: The toxicology of bath salts: a review of synthetic cathinones. J. Med. Toxicol 8, 33–42 (2011)

    Article  Google Scholar 

  4. McIntyre, I.M., Hamm, C.E., Aldridge, L., Nelson, C.L.: Acute methylone intoxication in an accidental drowning—a case report. Forensic Sci. Intl. 231, e1–e3 (2013)

    Article  Google Scholar 

  5. Cawrse, B.M., Levine, B., Jufer, R.A., Fowler, D.R., Vorce, S.P., Dickson, A.J., Holler, J.M.: Distribution of methylone in four postmortem cases. J. Anal. Toxicol 36, 434–439 (2012)

    Article  CAS  Google Scholar 

  6. Marinetti, L.J., Antonides, H.M.: Analysis of synthetic cathinones commonly found in bath salts in human performance and postmortem toxicology: method development, drug distribution and interpretation of results. J. Anal. Toxicol 37, 135–146 (2013)

    Article  CAS  Google Scholar 

  7. O'Byrne, P.M., Kavanagh, P.V., McNamara, S.M.: tokes, S.M.: Screening of stimulants including designer drugs in urine using a liquid chromatography tandem mass spectrometry system. J. Anal. Toxicol 37, 64–73 (2013)

    Article  Google Scholar 

  8. Usui, K., Aramaki, T., Hashiyada, M., Hayashizaki, Y., Funayama, M.: Quantitative analysis of 3,4-dimethylmethcathinone in blood and urine by liquid chromatography-tandem mass spectrometry in a fatal case. Leg Med (Tokyo) 16, 222–226 (2014)

  9. Jönsson, A.K., Söderberg, C., Espnes, K.A., Ahlner, J., Eriksson, A., Reis, M., Druid, H.: Sedative and hypnotic drugs—fatal and non-fatal reference blood concentrations. Forensic Sci. Int. 236, 138–145 (2014)

    Article  Google Scholar 

  10. Locos, O., Reynolds, D.: The characterization of 3,4-dimethylmethcathinone (3,4-DMMC). J. Forensic Sci. 57, 1303–1306 (2012)

    Article  CAS  Google Scholar 

  11. Ellefsen, K.N., Anizan, S., Castaneto, M.S., Desrosiers, N.A., Martin, T.M., Klette, K.L., Huestis, M.A.: Validation of the only commercially available immunoassay for synthetic cathinones in urine: Randox Drugs of Abuse V Biochip Array Technology. Drug Test Anal 6(7–8), 728–738 (2014)

  12. Fessessework Guale, S.S., Jeffrey, P.: Walterscheid, Hsin-Hung Chen, Crystal Arndt, Anna T. Kelly, Ashraf Mozayani: Validation of LC-TOF-MS screening for drugs, metabolites, and collateral compounds in forensic toxicology specimens. J Anal Toxicol 37, 17–24 (2013)

    Article  Google Scholar 

  13. Ojanperä, I., Kolmonen, M., Pelander, A.: Current use of high-resolution mass spectrometry in drug screening relevant to clinical and forensic toxicology and doping control. Anal Bioanal Chem 403, 1203–1220 (2012)

    Article  Google Scholar 

  14. Lesiak, A.D., Musah, R.M., Cody, R.B., Domin, M.A., Dane, A.J., Shepard, J.R.E.: Direct Analysis in real time mass spectrometry (DART-MS) of “bath salt” cathinone drug mixtures. Analyst 138, 3424–3432 (2013)

    Article  CAS  Google Scholar 

  15. Power, J.D., McDermott, S.D., Talbot, B., O'Brien, J.E., Kavanagh, P.: The analysis of amphetamine-like cathinone derivatives using positive electrospray ionization with in-source collision-induced dissociation. Rapid Commun Mass Spectrom 26, 2601–2611 (2012)

    Article  CAS  Google Scholar 

  16. Rasanen, I., Kyber, M., Szilvay, I., Rintatalo, J., Ojanperä, I.: Straightforward single-calibrant quantification of seized designer drugs by liquid chromatography-chemiluminescence nitrogen detection. Forensic Sci. Int. 237, 119–125 (2014)

  17. Li, L., Lurie, I.S.: Screening of seized emerging drugs by ultra-high performance liquid chromatography with photodiode array ultraviolet and mass spectrometric detection. Forensic Sci Int 237, 100–111 (2014)

  18. Tyrkkö, E., Pelander, A., Ketola, R., Ojanperä, I.: In silico and in vitro metabolism studies support identification of designer drugs in human urine by liquid chromatography/quadrupole-time-of-flight mass spectrometry. Anal Bioanal Chem 405, 6697–6709 (2013)

    Article  Google Scholar 

  19. Musah, R.A., Domin, M.A., Cody, R.B., Lesiak, A.D., John Dane, A., Shepard, J.R.E.: Direct analysis in real time mass spectrometry with collision-induced dissociation for structural analysis of synthetic cannabinoids. Rapid Commun Mass Spectrom 26, 2335–2342 (2012)

    Article  CAS  Google Scholar 

  20. Musah, R.A., Domin, M.A., Walling, M.A., Shepard, J.R.E.: Rapid identification of synthetic cannabinoids in herbal samples via direct analysis in real time mass spectrometry. Rapid Commun Mass Spectrom 26, 1109–1114 (2012)

    Article  CAS  Google Scholar 

  21. Steiner, R.R., Larson, R.L.: Validation of the direct analysis in real time source for use in forensic drug screening. J Forensic Sci 54, 617–622 (2009)

    Article  CAS  Google Scholar 

  22. Kauppila, T.J., Flink, A., Haapala, M., Laakkonen, U.-M., Aalberg, L., Ketola, R.A., Kostiainen, R.: Desorption atmospheric pressure photoionization–mass spectrometry in routine analysis of confiscated drugs. Forensic Sci. Int. 210, 206–212 (2011)

    Article  CAS  Google Scholar 

  23. Grange, A.H., Sovocool, G.W.: Detection of illicit drugs on surfaces using direct analysis in real time (DART) time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 25, 1271–1281 (2011)

    Article  CAS  Google Scholar 

  24. Leuthold, L.A., Mandscheff, J.-F., Fathi, M., Giroud, C., Augsburger, M., Varesio, E., Hopfgartner, G.: Desorption electrospray ionization mass spectrometry: direct toxicological screening and analysis of illicit Ecstasy tablets. Rapid Commun Mass Spectrom 20, 103–110 (2006)

    Article  CAS  Google Scholar 

  25. Cody, R.B., Laramee, J.A., Durst, H.D.: Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 77, 2297–2302 (2005)

    Article  CAS  Google Scholar 

  26. Cooks, R.G., Ouyang, Z., Takats, Z., Wiseman, J.M.: Ambient mass spectrometry. Science 311, 1566–1570 (2006)

    Article  CAS  Google Scholar 

  27. Dalgleish, J.K., Wleklinski, M., Shelley, J.T., Mulligan, C.C., Ouyang, Z., Graham Cooks, R.: Arrays of low-temperature plasma probes for ambient ionization mass spectrometry. Rapid Commun Mass Spectrom 27, 135–142 (2013)

    Article  CAS  Google Scholar 

  28. Lesiak, A.D., Shepard, J.R.E.: Recent advances in forensic drug analysis by DART-MS. Bioanalysis 6(6), 819–842 (2014)

    Article  CAS  Google Scholar 

  29. Ropero-Miller, J.D., Stour, P.R.: Forensic toxicology research and development evaluation of new and novel direct sample introduction, time of fligh mass spectrometry (AccuTOF-DART) instrument for postmortem toxicology screening, final report (2008)

  30. Jagerdeo, E., Abdel-Rehim, M.: Screening of cocaine and its metabolites in human urine samples by direct analysis in real-time source coupled to time-of-flight mass spectrometry after online preconcentration utilizing microextraction by packed sorbent. J. Am. Soc. Mass Spectrom 20, 891–899 (2009)

    Article  CAS  Google Scholar 

  31. Kawamura, M., Kikura-Hanajiri, R., Goda, Y.: Simple and rapid screening for methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) and their metabolites in urine using direct analysis in real time (DART)-TOFMS. Yakugaku Zasshi 131, 827–833 (2011)

    Article  CAS  Google Scholar 

  32. Lesiak, A.D., Adams, K., Domin, M.A., Henck, C., Shepard, J.R.E.: DART-MS for rapid, preliminary screening of urine for DMAA. Drug Test Anal 6, 788–796 (2014)

  33. Rodriguez-Lafuente, A., Mirnaghi, F., Pawliszyn, J.: Determination of cocaine and methadone in urine samples by thin-film solid-phase microextraction and direct analysis in real time (DART) coupled with tandem mass spectrometry. Anal Bioanal Chem. 405, 9723–9727 (2013)

    Article  CAS  Google Scholar 

  34. Mirnaghi, F.S., Pawliszyn, J.: Reusable solid-phase microextraction coating for direct immersion whole-blood analysis and extracted blood spot sampling coupled with liquid chromatography-tandem mass spectrometry and direct analysis in real time-tandem mass spectrometry. Anal. Chem. 84, 8301–8309 (2012)

    Article  CAS  Google Scholar 

  35. Shima, N., Katagi, M., Kamata, H., Matsuta, S., Nakanishi, K., Zaitsu, K., Kamata, T., Nishioka, H., Miki, A., Tatsuno, M., Sato, T., Tsuchihashi, H., Suzuki, K.: Urinary excretion and metabolism of the newly encountered designer drug 3,4-dimethylmethcathinone in humans. Forensic Toxicol 31, 101–112 (2013)

  36. Leffler, A.M., Smith, P.B.: The analytical investigation of synthetic street drugs containing cathinone analogs. Forensic Sci. Int. 234, 50–56 (2014)

    Article  CAS  Google Scholar 

  37. Wright, T.H., Cline-Parhamovich, K., Lajoie, D., Parsons, L., Dunn, M., Ferslew, K.E.: Deaths involving methylenedioxypyrovalerone (MDPV) in upper east Tennessee. J. Forensic Sci. 58, 1558–1562 (2013)

    Article  CAS  Google Scholar 

  38. Kesha, K., Boggs, C.L., Ripple, M.G., Allan, C.H., Levine, B., Jufer-Phipps, R., Doyon, S., Chi, P., Fowler, D.R.: Methylenedioxypyrovalerone (“bath salts”) related death: case report and review of the literature. J. Forensic Sci. 58, 1654–1659 (2013)

    Article  CAS  Google Scholar 

  39. Ojanperä, I.A., Heikman, P.K., Rasanen, I.J.: Urine analysis of 3,4-methylenedioxypyrovalerone in opioid-dependent patients by gas chromatography-mass spectrometry. Therapeut Drug Monitor. 33, 257–263 (2011)

  40. Yu, S., Crawford, E., Tice, J., Musselman, B., Wu, J.-T.: Bioanalysis without sample cleanup or chromatography: the evaluation and initial implementation of direct analysis in real time ionization mass spectrometry for the quantification of drugs in biological matrixes. Anal. Chem. 81, 193–202 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding of this work in part by DHS under BAA 13-007 Chemical Attribute Signature Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason R. E. Shepard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LaPointe, J., Musselman, B., O’Neill, T. et al. Detection of “Bath Salt” Synthetic Cathinones and Metabolites in Urine via DART-MS and Solid Phase Microextraction. J. Am. Soc. Mass Spectrom. 26, 159–165 (2015). https://doi.org/10.1007/s13361-014-1006-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-1006-9

Keywords

Navigation