Skip to main content
Log in

Combining Ion Mobility Spectrometry with Hydrogen-Deuterium Exchange and Top-Down MS for Peptide Ion Structure Analysis

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The gas-phase conformations of electrosprayed ions of the model peptide KKDDDDIIKIIK have been examined by ion mobility spectrometry (IMS) and hydrogen deuterium exchange (HDX)-tandem mass spectrometry (MS/MS) techniques. [M+4H]4+ ions exhibit two conformers with collision cross sections of 418 Å2 and 471 Å2. [M+3H]3+ ions exhibit a predominant conformer with a collision cross section of 340 Å2 as well as an unresolved conformer (shoulder) with a collision cross section of ~367 Å2. Maximum HDX levels for the more compact [M+4H]4+ ions and the compact and partially-folded [M+3H]3+ ions are ~12.9, ~15.5, and ~14.9, respectively. Ion structures obtained from molecular dynamics simulations (MDS) suggest that this ordering of HDX level results from increased charge-site/exchange-site density for the more compact ions of lower charge. Additionally, a new model that includes two distance calculations (charge site to carbonyl group and carbonyl group to exchange site) for the computer-generated structures is shown to better correlate to the experimentally determined per-residue deuterium uptake. Future comparisons of IMS-HDX-MS data with structures obtained from MDS are discussed with respect to novel experiments that will reveal the HDX rates of individual residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Yearly Growth of Protein Structures. Available at: http://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=molType-protein&seqid=100 (2014). Accessed 20 March 2014

  2. Konermann, L., Pan, J.X., Liu, Y.H.: Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev. 40(3), 1224–1234 (2011)

    Article  CAS  Google Scholar 

  3. Acharya, K.R., Lloyd, M.D.: The advantages and limitations of protein crystal structures. Trends Pharmacol. Sci. 26(1), 10–14 (2005)

    Article  CAS  Google Scholar 

  4. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass-spectrometry of large biomolecules. Science 246(4926), 64–71 (1989)

    Article  CAS  Google Scholar 

  5. Karas, M., Hillenkamp, F.: Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60(20), 2299–2301 (1988)

    Article  CAS  Google Scholar 

  6. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T., Matsuo, T.: Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2(8), 151–153 (1988)

    Article  CAS  Google Scholar 

  7. Chait, B.T., Kent, S.B.H.: Weighing naked proteins - practical, high-accuracy mass measurement of peptides and proteins. Science 257(5078), 1885–1894 (1992)

    Article  CAS  Google Scholar 

  8. Biemann, K.: Mass-spectrometry of peptides and proteins. Ann. Rev. Biochem. 61, 977–1010 (1992)

    Article  CAS  Google Scholar 

  9. Smith, R.D., Loo, J.A., Loo, R.R.O., Busman, M., Udseth, H.R.: Principles and practice of electrospray ionization - mass-spectrometry for large polypeptides and proteins. Mass Spectrom. Rev. 10(5), 359–451 (1991)

    Article  CAS  Google Scholar 

  10. Lee, S.W., Freivogel, P., Schindler, T., Beauchamp, J.L.: Freeze-dried biomolecules: FT-ICR studies of the specific solvation of functional groups and clathrate formation observed by the slow evaporation of water from hydrated peptides and model compounds in the gas phase. J. Am. Chem. Soc. 120(45), 11758–11765 (1998)

    Article  CAS  Google Scholar 

  11. Loo, J.A., Loo, R.R.O., Udseth, H.R., Edmonds, C.G., Smith, R.D.: Solvent-induced conformational-changes of polypeptides probed by electrospray-ionization mass-spectrometry. Rapid Commun. Mass Spectrom. 5(3), 101–105 (1991)

    Article  CAS  Google Scholar 

  12. Covey, T., Douglas, D.J.: Collision cross-sections for protein ions. J. Am. Soc. Mass Spectrom. 4(8), 616–623 (1993)

    Article  CAS  Google Scholar 

  13. Suckau, D., Shi, Y., Beu, S.C., Senko, M.W., Quinn, J.P., Wampler, F.M., McLafferty, F.W.: Coexisting stable conformations of gaseous protein ions. Proc. Natl. Acad. Sci. U. S. A. 90(3), 790–793 (1993)

    Article  CAS  Google Scholar 

  14. Clemmer, D.E., Hudgins, R.R., Jarrold, M.F.: Naked protein conformations—cytochrome-c in the gas-phase. J. Am. Chem. Soc. 117(40), 10141–10142 (1995)

    Article  CAS  Google Scholar 

  15. Wyttenbach, T., von Helden, G., Bowers, M.T.: Gas-phase conformation of biological molecules: bradykinin. J. Am. Chem. Soc. 118(35), 8355–8364 (1996)

    Article  CAS  Google Scholar 

  16. Loo, J.A., Edmonds, C.G., Smith, R.D.: Primary sequence information from intact proteins by electrospray ionization tandem mass-spectrometry. Science 248(4952), 201–204 (1990)

    Article  CAS  Google Scholar 

  17. Collings, B.A., Douglas, D.J.: Conformation of gas-phase myoglobin ions. J. Am. Chem. Soc. 118(18), 4488–4489 (1996)

    Article  CAS  Google Scholar 

  18. Schnier, P.D., Price, W.D., Jockusch, R.A., Williams, E.R.: Blackbody infrared radiative dissociation of bradykinin and its analogues: energetics, dynamics, and evidence for salt-bridge structures in the gas phase. J. Am. Chem. Soc. 118(30), 7178–7189 (1996)

    Article  CAS  Google Scholar 

  19. Kaltashov, I.A., Doroshenko, V.M., Cotter, R.J.: Gas phase hydrogen/deuterium exchange reactions of peptide ions in a quadrupole ion trap mass spectrometer. Proteins Struct. Funct. Genet. 28(1), 53–58 (1997)

    Article  CAS  Google Scholar 

  20. Shelimov, K.B., Jarrold, M.F.: Conformations, unfolding, and refolding of apomyoglobin in vacuum: an activation barrier for gas-phase protein folding. J. Am. Chem. Soc. 119(13), 2987–2994 (1997)

    Article  CAS  Google Scholar 

  21. Cassady, C.J., Carr, S.R.: Elucidation of isomeric structures for ubiquitin M+12H (12+) ions produced by electrospray ionization mass spectrometry. J. Mass Spectrom. 31(3), 247–254 (1996)

    Article  CAS  Google Scholar 

  22. Hudgins, R.R., Ratner, M.A., Jarrold, M.F.: Design of helices that are stable in vacuo. J. Am. Chem. Soc. 120(49), 12974–12975 (1998)

    Article  CAS  Google Scholar 

  23. Wang, F., Freitas, M.A., Marshall, A.G., Sykes, B.D.: Gas-phase memory of solution-phase protein conformation: H/D exchange and Fourier transform ion cyclotron resonance mass spectrometry of the N-terminal domain of cardiac troponin C. Int. J. Mass Spectrom. 192, 319–325 (1999)

    Article  CAS  Google Scholar 

  24. Gimon-Kinsel, R.E., Barbacci, D.C., Russell, D.H.: Conformations of protonated gas-phase bradykinin ions: evidence for intramolecular hydrogen bonding. J. Mass Spectrom. 34(2), 124–136 (1999)

    Article  CAS  Google Scholar 

  25. Wolynes, P.G.: Biomolecular folding in vacuo. Proc. Natl. Acad. Sci. U. S. A. 92(7), 2426–2427 (1995)

    Article  CAS  Google Scholar 

  26. Freitas, M.A., Hendrickson, C.L., Emmett, M.R., Marshall, A.G.: Gas-phase bovine ubiquitin cation conformations resolved by gas-phase hydrogen/deuterium exchange rate and extent. Int. J. Mass Spectrom. 185, 565–575 (1999)

    Article  Google Scholar 

  27. Breuker, K., McLafferty, F.W.: Stepwise evolution of protein native structure with electrospray into the gas phase, 10(–12) to 10(2) S. Proc. Natl. Acad. Sci. U. S. A. 105(47), 18145–18152 (2008)

    Article  CAS  Google Scholar 

  28. Badman, E.R., Myung, S., Clemmer, D.E.: Evidence for unfolding and refolding of gas-phase cytochrome c ions in a Paul trap. J. Am. Soc. Mass Spectrom. 16(9), 1493–1497 (2005)

    Article  CAS  Google Scholar 

  29. Myung, S., Badman, E.R., Lee, Y.J., Clemmer, D.E.: Structural transitions of electrosprayed ubiquitin ions stored in an ion trap over similar to 10 ms to 30 s. J. Phys. Chem. A 106(42), 9976–9982 (2002)

    Article  CAS  Google Scholar 

  30. Wyttenbach, T., Bowers, M.T.: Structural stability from solution to the gas phase: native solution structure of ubiquitin survives analysis in a solvent-free ion mobility-mass spectrometry environment. J. Phys. Chem. B 115(42), 12266–12275 (2011)

    Article  CAS  Google Scholar 

  31. Koeniger, S.L., Merenbloom, S.I., Clemmer, D.E.: Evidence for many resolvable structures within conformation types of electrosprayed ubiquitin ions. J. Phys. Chem. B 110(13), 7017–7021 (2006)

    Article  CAS  Google Scholar 

  32. Heck, A.J.R.: Native mass spectrometry: a bridge between interactomics and structural biology. Nat. Methods 5(11), 927–933 (2008)

    Article  CAS  Google Scholar 

  33. Benesch, J.L., Robinson, C.V.: Mass spectrometry of macromolecular assemblies: preservation and dissociation. Curr. Opin. Struct. Biol. 16(2), 245–251 (2006)

    Article  CAS  Google Scholar 

  34. Wood, T.D., Chorush, R.A., Wampler, F.M., Little, D.P., Oconnor, P.B., McLafferty, F.W.: Gas-phase folding and unfolding of cytochrome c cations. Proc. Natl. Acad. Sci. U. S. A. 92(7), 2451–2454 (1995)

    Article  CAS  Google Scholar 

  35. Campbell, S., Rodgers, M.T., Marzluff, E.M., Beauchamp, J.L.: Deuterium exchange reactions as a probe of biomolecule structure. Fundamental studies of cas phase H/D exchange reactions of protonated glycine oligomers with D2O, CD3OD, CD3CO2D, and ND3. J. Am. Chem. Soc. 117(51), 12840–12854 (1995)

    Article  CAS  Google Scholar 

  36. Wyttenbach, T., Bowers, M.T.: Gas phase conformations of biological molecules: the hydrogen/deuterium exchange mechanism. J. Am. Soc. Mass Spectrom. 10(1), 9–14 (1999)

    Article  CAS  Google Scholar 

  37. Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120(13), 3265–3266 (1998)

    Article  CAS  Google Scholar 

  38. Syka, J.E.P., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 101(26), 9528–9533 (2004)

    Article  CAS  Google Scholar 

  39. Ferguson, P.L., Pan, J.X., Wilson, D.J., Dempsey, B., Lajoie, G., Shilton, B., Konermann, L.: Hydrogen/deuterium scrambling during quadrupole time-of-flight MS/MS analysis of a zinc-binding protein domain. Anal. Chem. 79(1), 153–160 (2007)

    Article  CAS  Google Scholar 

  40. Valentine, S.J., Clemmer, D.E.: Temperature-dependentH/D exchange of compact and elongated cytochrome c ions in the gas phase. J. Am. Soc. Mass Spectrom. 13(5), 506–517 (2002)

  41. Valentine, S.J., Clemmer, D.E.: H/D exchange levels of shape-resolved cytochrome c conformers in the gas phase. J. Am. Chem. Soc. 119(15), 3558–3566 (1997)

    Article  CAS  Google Scholar 

  42. Rand, K.D., Pringle, S.D., Murphy, J.P., Fadgen, K.E., Brown, J., Engen, J.R.: Gas-phase hydrogen/deuterium exchange in a traveling wave ion guide for the examination of protein conformations. Anal. Chem. 81(24), 10019–10028 (2009)

  43. Rand, K.D., Pringle, S.D., Morris, M., Brown, J.M.: Site-specific analysis of gas-phasehydrogen/deuterium exchange of peptides and proteins by electron transfer dissociation. Anal. Chem. 84(4), 1931–1940 (2012)

    Article  CAS  Google Scholar 

  44. Rand, K.D., Pringle, S.D., Morris, M., Engen, J.R., Brown, J.M.: ETD in a traveling wave ion guide at tuned z-spray ion source conditions allows for site-specific hydrogen/deuterium exchange measurements. J. Am. Soc. Mass Spectrom. 22(10), 1784–1793 (2011)

    Article  CAS  Google Scholar 

  45. Rand, K.D., Lund, F.W., Amon, S., Jorgensen, T.J.D.: Investigation of amide hydrogen back-exchange in Asp and His repeats measured by hydrogen (H-1/H-2) exchange mass spectrometry. Int. J. Mass Spectrom. 302(1/3), 110–115 (2011)

    Article  CAS  Google Scholar 

  46. Zehl, M., Rand, K.D., Jensen, O.N., Jorgensen, T.J.D.: Electron Transfer dissociation facilitates the measurement of deuterium incorporation into selectively labeled peptides with single residue resolution. J. Am. Chem. Soc. 130(51), 17453–17459 (2008)

    Article  CAS  Google Scholar 

  47. Rand, K.D., Jorgensen, T.J.D.: Development of a peptide probe for the occurrence of hydrogen (H-1/H-2) scrambling upon gas-phase fragmentation. Anal. Chem. 79(22), 8686–8693 (2007)

    Article  CAS  Google Scholar 

  48. Valentine, S.J., Counterman, A.E., Hoaglund, C.S., Reilly, J.P., Clemmer, D.E.: Gas-phase separations of protease digests. J. Am. Soc. Mass Spectrom. 9(11), 1213–1216 (1998)

    Article  CAS  Google Scholar 

  49. Fenn, L.S., McLean, J.A.: Biomolecular structural separations by ion mobility-mass spectrometry. Anal. Bioanal. Chem. 391(3), 905–909 (2008)

    Article  CAS  Google Scholar 

  50. Bernstein, S.L., Dupuis, N.F., Lazo, N.D., Wyttenbach, T., Condron, M.M., Bitan, G., Teplow, D.B., Shea, J.E., Ruotolo, B.T., Robinson, C.V., Bowers, M.T.: Amyloid-beta protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat. Chem. 1(4), 326–331 (2009)

  51. Dugourd, P., Hudgins, R.R., Clemmer, D.E., Jarrold, M.F.: High-resolution ion mobility measurements. Rev. Sci. Instrum. 68(2), 1122–1129 (1997)

    Article  CAS  Google Scholar 

  52. Wu, C., Siems, W.F., Asbury, G.R., Hill, H.H.: Electrospray ionization high-resolution ion mobility spectrometry-mass spectrometry. Anal. Chem. 70(23), 4929–4938 (1998)

    Article  CAS  Google Scholar 

  53. Hoaglund, C.S., Valentine, S.J., Sporleder, C.R., Reilly, J.P., Clemmer, D.E.: Three-dimensional ion mobility TOFMS analysis of electrosprayed biomolecules. Anal. Chem. 70(11), 2236–2242 (1998)

    Article  CAS  Google Scholar 

  54. Gillig, K.J., Ruotolo, B., Stone, E.G., Russell, D.H., Fuhrer, K., Gonin, M., Schultz, A.J.: Coupling high-pressure MALDI with ion mobility/orthogonal time-of flight mass spectrometry. Anal. Chem. 72(17), 3965–3971 (2000)

    Article  CAS  Google Scholar 

  55. Steiner, W.E., Clowers, B.H., English, W.A., Hill, H.H.: Atmospheric pressure matrix-assisted laser desorption/ionization with analysis by ion mobility time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 18(8), 882–888 (2004)

    Article  CAS  Google Scholar 

  56. Tang, K., Shvartsburg, A.A., Lee, H.N., Prior, D.C., Buschbach, M.A., Li, F.M., Tolmachev, A.V., Anderson, G.A., Smith, R.D.: High-sensitivity ion mobility spectrometry/mass spectrometry using electrodynamic ion funnel interfaces. Anal. Chem. 77(10), 3330–3339 (2005)

    Article  CAS  Google Scholar 

  57. Stlouis, R.H., Hill, H.H.: Ion mobility spectrometry in analytical-chemistry. Crit. Rev. Anal. Chem. 21(5), 321–355 (1990)

    Article  CAS  Google Scholar 

  58. Clemmer, D.E., Jarrold, M.F.: Ion mobility measurements and their applications to clusters and biomolecules. J. Mass Spectrom. 32(6), 577–592 (1997)

    Article  CAS  Google Scholar 

  59. Hoaglund-Hyzer, C.S., Counterman, A.E., Clemmer, D.E.: Anhydrous protein ions. Chem. Rev. 99(10), 3037–3079 (1999)

    Article  CAS  Google Scholar 

  60. Wyttenbach, T., Bowers, M.T.: Gas-phase conformations: the ion mobility/ion chromatography method. Mod. Mass Spectrom. 225, 207–232 (2003)

    Article  CAS  Google Scholar 

  61. Collins, D.C., Lee, M.L.: Developments in ion mobility spectrometry-mass spectrometry. Anal. Bioanal. Chem. 372(1), 66–73 (2002)

    Article  CAS  Google Scholar 

  62. Lee, S., Julian, R.R., Valentine, S.J., Reilly, J.P., Clemmer, D.E.: Biomolecular condensation via ultraviolet excitation in vacuo. Int. J. Mass Spectrom. 316, 6–11 (2012)

    Article  Google Scholar 

  63. Chen, Y.H., Hill, H.H., Wittmer, D.P.: Thermal effects on electrospray ionization ion mobility spectrometry. Int. J. Mass Spectrom. Ion Process. 154(1/2), 1–13 (1996)

    Article  CAS  Google Scholar 

  64. Wyttenbach, T., von Helden, G., Batka, J.J., Carlat, D., Bowers, M.T.: Effect of the long-range potential on ion mobility measurements. J. Am. Soc. Mass Spectrom. 8(3), 275–282 (1997)

    Article  CAS  Google Scholar 

  65. Shvartsburg, A.A., Jarrold, M.F.: An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem. Phys. Lett. 261(1/2), 86–91 (1996)

    Article  CAS  Google Scholar 

  66. Mesleh, M.F., Hunter, J.M., Shvartsburg, A.A., Schatz, G.C., Jarrold, M.F.: Structural information from ion mobility measurements: effects of the long-range potential (vol 100, pg 16082, 1996). J. Phys. Chem. A 101(5), 968 (1997)

    Article  Google Scholar 

  67. Lee, S., Valentine, S.J., Reilly, J.P., Clemmer, D.E.: Analyzing a mixture of disaccharides by IMS-VUVPD-MS. Int. J. Mass Spectrom. 309, 161–167 (2012)

    CAS  Google Scholar 

  68. Lee, S., Li, Z.Y., Valentine, S.J., Zucker, S.M., Webber, N., Reilly, J.P., Clemmer, D.E.: Extracted fragment ion mobility distributions: a new method for complex mixture analysis. Int. J. Mass Spectrom. 309, 154–160 (2012)

    CAS  Google Scholar 

  69. Zucker, S.M., Lee, S., Webber, N., Valentine, S.J., Reilly, J.P., Clemmer, D.E.: An Ion mobility/ion trap/photodissociation instrument for characterization of ion structure. J. Am. Soc. Mass Spectrom. 22(9), 1477–1485 (2011)

    Article  CAS  Google Scholar 

  70. Counterman, A.E., Valentine, S.J., Srebalus, C.A., Henderson, S.C., Hoaglund, C.S., Clemmer, D.E.: High-order structure and dissociation of gaseous peptide aggregates that are hidden in mass spectra. J. Am. Soc. Mass Spectrom. 9(8), 743–759 (1998)

    Article  CAS  Google Scholar 

  71. Vanquelef, E., Simon, S., Marquant, G., Garcia, E., Klimerak, G., Delepine, J.C., Cieplak, P., Dupradeau, F.Y.: R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res. 39, W511–W517 (2011)

  72. Wang, F., Becker, J.P., Cieplak, P., Dupradeau, F.Y.: R.E.D. Python: object oriented programming for Amber force fields. Université de Picardie - Jules Verne, Sanford|Burnham Medical Research Institute (2013)

  73. Dupradeau, F.Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., Lelong, D., Rosanski, W., Cieplak, P.: The R.ED. tools: advances in RESP and ESP charge derivation and force field library building. Phys. Chem. Chem. Phys. 12(28), 7821–7839 (2010)

    Article  CAS  Google Scholar 

  74. Bayly, C.I., Cieplak, P., Cornell, W.D., Kollman, P.A.: A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges—the RESP model. J. Phys. Chem. 97(40), 10269–10280 (1993)

    Article  CAS  Google Scholar 

  75. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., Montgomery, J.A.: General atomic and molecular electronic-structure system. J. Comput. Chem. 14(11), 1347–1363 (1993)

    Article  CAS  Google Scholar 

  76. Gordon, M.S., Schmidt, M.W.: Advances in electronic structure theory: GAMESS a decade later. In: Dykstra, C.E., Frenking, G., Kim, K.S., Scuseria, G.E. (eds.) Theory and Applications of Computational Chemistry: The first 40 years, pp. 1167–1189. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  77. Kollman, P.A.: Advances and continuing challenges in achieving realistic and predictive simulations of the properties of organic and biological molecules. Acc. Chem. Res. 29(10), 461–469 (1996)

    Article  CAS  Google Scholar 

  78. Gidden, J., Bowers, M.T.: Gas-phase conformational and energetic properties of deprotonated dinucleotides. Eur. Phys. J. D Atom. Mol. Opt. Phys. 20(3), 409–419 (2002)

    CAS  Google Scholar 

  79. Case, D.A., Darden T.A.; Cheatham, T E. III,; Simmerling, C.L.; Wang, L.; Duke, R.E.; Luo, R.; Walker, R.C.; Zhang, W.; Merz, K.M.; Roberts, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Swails, J.; Götz, A. W.; Kolossváry, I.; Wong, K.F.; Paesani, F.; Vanicek, J.; Wolf, R.M.; Liu, J.; Wu, X.; Brozell, S.R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye, X.; Wang, J.; Hsieh, M.J.; Cui, G.; Roe, D.R.; Mathews, D.H.; Seetin, M.G.; Salomon-Ferrer, R.; Sagui, C.; Babin, V.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Kollman, P.A.: Amber 12. University of California: San Francisco (2012)

  80. Jarrold Research Group, I.U.: MOBCAL – A Program to Calculate Mobilities. Available at: http://www.indiana.edu/~nano/software.html. Accessed 17 April 2014

  81. Mesleh, M.F., Hunter, J.M., Shvartsburg, A.A., Schatz, G.C., Jarrold, M.F.: Structural information from ion mobility measurements: effects of the long-range potential. J. Phys. Chem. 100(40), 16082–16086 (1996)

    Article  CAS  Google Scholar 

  82. Mason, E.A., McDaniel, E.W.: Transport Properties of Ions in Gases. Wiley, New York (1988)

    Book  Google Scholar 

  83. Zubarev, R.A., Haselmann, K.F., Budnik, B., Kjeldsen, F., Jensen, F.: Towards an understanding of the mechanism of electron-capture dissociation: a historical perspective and modern ideas. Eur. J. Mass Spectrom. 8(5), 337–349 (2002)

    Article  CAS  Google Scholar 

  84. Sohn, C.H., Chung, C.K., Yin, S., Ramachandran, P., Loo, J.A., Beauchamp, J.L.: Probing the mechanism of electron capture and electron transfer dissociation using tags with variable electron affinity. J. Am. Chem. Soc. 131(15), 5444–5459 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the Eberly College of Arts and Sciences at West Virginia University for providing laboratory research startup funds as well as the Brodie Discovery and Innovation Award. Additionally, partial support has been provided by the 2012–2013 Starter Grant Award from the Society of Analytical Chemists of Pittsburgh (SACP) as well as the 2012–2013 Ralph E. Powe Junior Faculty Advancement Award from Oak Ridge Associated Universities (ORAU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Valentine.

Additional information

Mahdiar Khakinejad and Samaneh Ghassabi Kondalaji contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 803 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khakinejad, M., Kondalaji, S.G., Maleki, H. et al. Combining Ion Mobility Spectrometry with Hydrogen-Deuterium Exchange and Top-Down MS for Peptide Ion Structure Analysis. J. Am. Soc. Mass Spectrom. 25, 2103–2115 (2014). https://doi.org/10.1007/s13361-014-0990-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0990-0

Keywords

Navigation