Skip to main content

Experimental Investigation of the 2D Ion Beam Profile Generated by an ESI Octopole-QMS System

Abstract

In this paper, we have employed an ion imaging approach to investigate the behavior of ions exiting from a quadrupole mass spectrometer (QMS) system that employs a radio frequency octopole ion guide before the QMS. An in-vacuum active pixel detector (Timepix) is employed at the exit of the QMS to image the ion patterns. The detector assembly simultaneously records the ion impact position and number of ions per pixel in every measurement frame. The transmission characteristics of the ion beam exiting the QMS are studied using this imaging detector under different operating conditions. Experimental results confirm that the ion spatial distribution exiting the QMS is heavily influenced by ion injection conditions. Furthermore, ion images from Timepix measurements of protein standards demonstrate the capability to enhance the quality of the mass spectral information and provide a detailed insight in the spatial distribution of different charge states (and hence different m/z) ions exiting the QMS.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1.

    Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926), 64–71 (1989)

    Article  CAS  Google Scholar 

  2. 2.

    Hang, W., Lewis, C., Majidi, V.: Practical considerations when using radio frequency-only quadrupole ion guide for atmospheric pressure ionization sources with time-of-flight mass spectrometry. Analyst 128, 273–280 (2003)

    Article  CAS  Google Scholar 

  3. 3.

    Paul, W.: Das elektrische massenfilter. Z. Phys. 40, 262–273 (1955)

    Article  Google Scholar 

  4. 4.

    Brubaker, W.M., Tuul, J.: Performance studies of a quadrupole mass filter. Rev. Sci. Instrum. 35(8), 1007–1010 (1964)

    Article  Google Scholar 

  5. 5.

    Dylla, H.F., Jarrell, J.A.: Transmission-resolution curves for a quadrupole mass spectrometer with separated rf and DC fields in the entrance aperture. Rev. Sci. Instrum. 47(3), 331–333 (1976)

    Article  CAS  Google Scholar 

  6. 6.

    Batey, J.H.: Quadrupole gas analyzers. Vacuum 37, 659–668 (1987)

    Article  CAS  Google Scholar 

  7. 7.

    Konenkov, N.V.: Influence of fringing fields on the acceptance of a quadrupole mass filter in the separation mode of the intermediate stability region. Int. J. Mass Spectrom. Ion Process. 123, 101–105 (1993)

    Article  CAS  Google Scholar 

  8. 8.

    Gibson, J.R., Evans, K.G., Syed, S.U., Maher, S., Taylor, S.: A method of computing accurate 3D fields of a quadrupole mass filter and their use for prediction of filter behavior. J. Am. Soc. Mass Spectrom. 23, 1593–1601 (2012)

    Article  CAS  Google Scholar 

  9. 9.

    Price, E.D., Todd, J.F.J.: Dynamic Mass Spectrometry, Vol 5, pp. 41–54. Heyden and Son, London (1978)

    Google Scholar 

  10. 10.

    Birkinshaw, K., Hirst, D.M., Jarrold, M.F.: The focusing of an ion beam from a quadrupole mass filter using an electrostatic octopole lens. Phys. E Sci. Instrum. 11, 1037–1040 (1978)

    Article  CAS  Google Scholar 

  11. 11.

    Kane, T.E., Angelico, V.J., Wysocki, V.H.: Use of condensation figures to image low-energy ion beam damage of monolayer films. Anal. Chem. 66, 3733–3736 (1994)

    Article  CAS  Google Scholar 

  12. 12.

    Ferrer, R., Kwiatkowski, A.A., Bollen, G., Lincoln, D.L., Morrissey, D.J., Pang, G.K., Ringle, R., Savory, J., Schwarz, S.: Ion beam properties after mass filtering with a linear radiofrequency quadrupole. Nucl. Inst. Methods Phys. Res. A 735, 382–389 (2014)

    Article  CAS  Google Scholar 

  13. 13.

    Tolmachev, A.V., Udseth, H.R., Smith, R.D.: Charge capacity limitations of radio frequency ion guides in their use for improved ion accumulation and trapping in mass spectrometry. Anal. Chem. 72, 970–978 (2000)

    Article  CAS  Google Scholar 

  14. 14.

    Tolmachev, A.V., Udseth, H.R., Smith, R.D.: Radial stratification of ions as a function of mass to charge ratio in collisional cooling radio frequency multipoles used as ion guides or ion traps. Rapid Commun. Mass Spectrom. 14, 1907–1913 (2000)

    Article  CAS  Google Scholar 

  15. 15.

    Tolmachev, A.V., Udseth, H.R., Smith, R.D.: Modeling the ion density distribution in collisional cooling rf multipole ion guides. Int. J. Mass Spectrom. 222, 155–174 (2000)

    Article  Google Scholar 

  16. 16.

    Grinfeld, D., Kopaev, I., Makarov, A., Monastyrskiy, M.: Space-charge effects in rf ion storage devices. ASMS, Colorado, USA (2011)

  17. 17.

    Gademann, G.H., Huismans, Y., Gijsbertsen, A., Jungmann, J., Visschers, J., Vrakking, M.J.J.: Velocity map imaging using an in-vacuum pixel detector. Rev. Sci. Instrum. 80, 103105–103107 (2009)

    Article  Google Scholar 

  18. 18.

    Jungmann, J.H., MacAleese, L., Buijs, R., Giskes, F., de Snaijer, A., Visser, J., Visschers, J., Vrakking, M.J.J., Heeren, R.M.A.: Fast, high resolution mass spectrometry imaging using a Medipix pixelated detector. J. Am. Soc. Mass Spectrom. 21(12), 2023–2030 (2010)

    Article  CAS  Google Scholar 

  19. 19.

    Jungmann, J.H., MacAleese, L., Visser, J., Vrakking, M.J.J., Heeren, R.M.A.: High dynamic range biomolecular ion microscopy with the Timepix detector. Anal. Chem. 83(20), 7888–7894 (2011)

    Article  CAS  Google Scholar 

  20. 20.

    Bamberger, C., Renz, U., Bamberger, A.: Digital imaging mass spectrometry. J. Am. Soc. Mass Spectrom. 22(6), 1079–1087 (2011)

    Article  CAS  Google Scholar 

  21. 21.

    Kiss, A., Jungmann, J.H., Smith, D.F., Heeren, R.M.A.: Microscope mode secondary ion mass spectrometry imaging with a Timepix detector. Rev. Sci. Instrum. 84, 013704–7 (2013)

  22. 22.

    Jungmann, J.H., Smith, D.F., MacAleese, L., Klinkert, I., Visser, J., Heeren, R.M.A.: Biological tissue imaging with a position and time sensitive pixelated detector. J. Am. Soc. Mass Spectrom. 23, 1679–1688 (2012)

    Article  CAS  Google Scholar 

  23. 23.

    Jungmann, J.H., Smith, D.F., Kiss, A., MacAleese, L., Buijs, R., Heeren, R.M.A.: An in-vacuum, pixelated detection system for mass spectrometric analysis and imaging of macromolecules. Int. J. Mass Spectrom. 341/342, 34–44 (2013)

  24. 24.

    Dawson, P.H.: Quadrupole Mass Spectrometry and Its Applications. Elsevier, Amsterdam (1976)

    Google Scholar 

  25. 25.

    Douglas, D.J.: Linear quadrupoles in mass spectrometry. Mass Spectrom. Rev. 28, 937–960 (2009)

    Article  CAS  Google Scholar 

  26. 26.

    Miller, P.E., Denton, M.B.: Transmission properties of rf-only quadrupole mass filter. Int. J. Mass Spectrom. Ion Process. 72, 223–238 (1986)

    Article  CAS  Google Scholar 

  27. 27.

    Llopart, X.C., Dinapoli, M., Segundo, R.S., Pernigotti, D.E.: Medipix2, a 64 k pixel readout chip with 55 micron square elements working in single photon counting mode. IEEE Trans. Nucl. Sci. 49, 2279–2283 (2002)

    Article  Google Scholar 

  28. 28.

    Llopart, X.C., Campbell, M.: First test measurements of a 64 k pixel readout chip working in single photon counting mode. Nucl. Inst. Methods A 509, 157–163 (2003)

    Article  CAS  Google Scholar 

  29. 29.

    Llopart, X., Ballabriga, R., Campbell, M., Tlustos, L., Wong, W.: Timepix, a 65 k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl. Inst. Methods Phys. Res. A 581, 485–494 (2007)

    Article  CAS  Google Scholar 

  30. 30.

    Jungmann, J.H., Heeren, R.M.A.: Detection systems for mass spectrometry imaging—a perspective on novel developments with a focus on active pixel detectors. Rapid Commun. Mass Spectrom. 27, 1–23 (2013)

    Article  CAS  Google Scholar 

  31. 31.

    Vallerga, J.M., Tremsin, J., Siegmund, A., Mikulec, O., Clark, B.A.: Optically sensitive Medipix2 detector for adaptive optics wavefront sensing. Nucl. Inst. Methods Phys. Res. A 546, 263–269 (2005)

    Article  CAS  Google Scholar 

  32. 32.

    Turecek, D., Holy, T., Jakubek, J., Pospisil, S., Vykydal, Z.: Pixelman: a multi-platform data acquisition and processing software package for Medipix2, Timepix, and Medipix3 detectors. J. Instrum. 6, pp. C01046 (2011). doi:10.1088/1748-0221/6/01/C01046

  33. 33.

    Barbu, I.T.M., van der Burgt, Y.E.M., Duursma, M.C., Takáts, Z., Seynen, M., Konijnenburg, M., Vijftigschild, A.J.M., Attema, I., Heeren, R.M.A.: A novel workflow control system for Fourier transform ion cyclotron resonance mass spectrometry allows for unique on-the-fly data-dependent decisions. Rapid Commun. Mass Spectrom. 22, 1245–1256 (2008)

    Article  Google Scholar 

  34. 34.

    Tolmachev, A., Harkewicz, R., Alving, K., Masselon, C., Anderson, G., Rakov, V., Pasa-Tolic, L., Nikolaev, E., Belov, M., Udseth, H., Smith, R.D.: Radial stratification of ions as a function of m/z ratio in collisional cooling rf multipoles used as ion guides or ion traps. Proceedings of the 48th ASMS Conference, Long Beach, CA, June 11–15, p. 115 (CD ROM) (2000)

Download references

Acknowledgments

This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organization for Scientific Research (NWO). The research is supported by the Comprehensive Analytical Science and Technology (COAST) foundation, which is the assigned program committee in the NWO Technology Area for Sustainable Chemistry (TASC) program. The authors acknowledge Ronald Buijs, Marc Duursma, and Frans Giskes of AMOLF for their contribution to the experiments, and also Professor Stephen Taylor and Dr. Ken Evans of the University of Liverpool for their advice and constructive analysis during the course of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ron M. A. Heeren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Syed, S.U.A.H., Eijkel, G.B., Kistemaker, P. et al. Experimental Investigation of the 2D Ion Beam Profile Generated by an ESI Octopole-QMS System. J. Am. Soc. Mass Spectrom. 25, 1780–1787 (2014). https://doi.org/10.1007/s13361-014-0958-0

Download citation

Key words

  • Quadrupole
  • Imaging MS
  • Ion transmission
  • Active pixel detector