Skip to main content

On-line Monitoring of Continuous Flow Chemical Synthesis Using a Portable, Small Footprint Mass Spectrometer

Abstract

For on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1.

    Griffiths-Jones, C.M., Hopkin, M.D., Jönsson, D., Ley, S.V., Tapolczay, D.J., Vickerstaffe, E., Ladlow, M.J.: Fully automated flow-through synthesis of secondary sulfonamides in a binary reactor system. Combinat. Chem. 9, 422–430 (2007)

    Article  CAS  Google Scholar 

  2. 2.

    Carter, C.F., Lange, H., Ley, S.V., Baxendale, I.R., Wittkamp, B., Goode, J.G., Gaunt, N.L.: ReactIR flow cell: a new analytical tool for continuous flow chemical processing. Organic Process Res. Dev. 14, 393–404 (2010)

    Article  CAS  Google Scholar 

  3. 3.

    Pivonka, D.E., Russell, K., Gero, T.: Tools for combinatorial chemistry: in situ infrared analysis of solid-phase organic reactions. Appl. Spectrosc. 50, 1471–1478 (1996)

    Article  CAS  Google Scholar 

  4. 4.

    DeThomas, F.A., Hall, J.W., Monfre, S.L.: Real-time monitoring of polyurethane production using near-infrared spectroscopy. Talanta 41, 425–431 (1994)

    Article  CAS  Google Scholar 

  5. 5.

    Clegg, I.M., Pearce, J., Content, S.T.: In situ raman spectroscopy: a process analytical technology tool to monitor a de-protection reaction carried out in aqueous solution. Appl. Spectrosc. 66, 151–156 (2012)

    Article  CAS  Google Scholar 

  6. 6.

    Schafer, W.A., Hobbs, S., Rehm, J., Rakestraw, D.A., Orella, C., McLaughlin, M., Ge, Z., Welch, C.J.: Mobile tool for HPLC reaction monitoring. Organic Process Res. Dev. 11, 870–876 (2007)

    Article  CAS  Google Scholar 

  7. 7.

    Welch, C.J., Gong, X., Cuff, J., Dolman, S., Nyrop, J., Lin, F., Rogers, H.: Online analysis of flowing streams using microflow HPLC. Organic Process Res. Dev. 13, 1022–1025 (2009)

    Article  CAS  Google Scholar 

  8. 8.

    Shey, J.Y., Sun, C.M.: Liquid-phase combinatorial reaction monitoring by conventional 1H NMR spectroscopy. Tetrahedron Lett. 43, 1725–1729 (2002)

    Article  CAS  Google Scholar 

  9. 9.

    Fabris, D.: Mass spectrometric approaches for the investigation of dynamic processes in condensed phase. Mass Spectrom. Rev. 24, 30–54 (2005)

    Article  CAS  Google Scholar 

  10. 10.

    Dell’Orco, P., Brum, J., Matsuoka, R., Badlani, M., Muske, K.: Monitoring process-scale reactions using API mass spectrometry. Anal. Chem. 71, 5165–5170 (1999)

    Article  Google Scholar 

  11. 11.

    Zhu, L., Gamez, G., Chen, H.W., Huang, H.X., Chingin, K., Zenobi, R.: Real-time, on-line monitoring of organic chemical reactions using extractive electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 22, 2993–2998 (2008)

    Article  CAS  Google Scholar 

  12. 12.

    McCullough, B.J., Bristow, T., O’Connor, G., Hopley, C.: On‐line reaction monitoring by extractive electrospray ionization. Rapid Commun. Mass Spectrom. 25, 1445–1451 (2011)

    Article  CAS  Google Scholar 

  13. 13.

    Harry, E.L., Bristow, A.W.T., Wilson, I.D., Creaser, C.S.: Real-time reaction monitoring using ion mobility-mass spectrometry. Analyst 136, 1728–1732 (2011)

    Article  CAS  Google Scholar 

  14. 14.

    Roscioli, K.M., Zhanga, X., Li, S.X., Goetzb, G.H., Chengb, G., Zhangc, Z., Siemsa, W.F., Hill Jr., H.H.: Real time pharmaceutical reaction monitoring by electrospray ion mobility-mass spectrometry. Int. J. Mass Spectrom. 336, 27–36 (2013)

    Article  CAS  Google Scholar 

  15. 15.

    Malcolm, A., Wright, S., Syms, R.R.A., Moseley, R.W., O’Prey, Shane., Dash, N., Pegus, A., Crichton, E., Hong, G., Holmes, A.S., Finlay, A., Edwards, P., Hamilton, S.E., Welch, C.J.: A miniature mass spectrometer for liquid chromatography applications. Rapid Commun. Mass Spectrom. 25, 3281–3288 (2011)

  16. 16.

    Browne, D.L., Wright, S., Deadman, B.J., Dunnage, S., Baxendale, I.R., Turner, R.M., Ley, S.V.: Continuous flow reaction monitoring using an on-line miniature mass spectrometer. Rapid Commun. Mass Spectrom. 26, 1999–2010 (2012)

    Article  CAS  Google Scholar 

  17. 17.

    Loudon, G.M., Radhakrishna, A.S., Almond, M.R., Blodgett, J.K., Boutin, R.H.: Conversion of aliphatic amides into amines with [IJ Bis(trifluoroacetoxy)iodo]benzene. 1. Scope of the reaction. J. Org. Chem. 49, 4212–4216 (1984)

    Article  Google Scholar 

  18. 18.

    Palmiera, A., Ley, S.V., Hammond, K., Polyzos, A., Baxendale, I.R.: A microfluidic flow chemistry platform for organic synthesis: the Hofmann arrangement. Tetrahedron Lett. 50, 3287–3289 (2009)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tony W. T. Bristow.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 216 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bristow, T.W.T., Ray, A.D., O’Kearney-McMullan, A. et al. On-line Monitoring of Continuous Flow Chemical Synthesis Using a Portable, Small Footprint Mass Spectrometer. J. Am. Soc. Mass Spectrom. 25, 1794–1802 (2014). https://doi.org/10.1007/s13361-014-0957-1

Download citation

Keywords

  • Continuous flow chemistry
  • Reaction monitoring
  • Small footprint portable mass spectrometer
  • On-line