Skip to main content
Log in

Application of Printed Circuit Board Technology to FT-ICR MS Analyzer Cell Construction and Prototyping

  • Focus: Advancing High Performance Mass Spectrometry: Application Note
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Although Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) remains the mass spectrometry platform that provides the highest levels of performance for mass accuracy and resolving power, there is room for improvement in analyzer cell design as the ideal quadrupolar trapping potential has yet to be generated for a broadband MS experiment. To this end, analyzer cell designs have improved since the field’s inception, yet few research groups participate in this area because of the high cost of instrumentation efforts. As a step towards reducing this barrier to participation and allowing for more designs to be physically tested, we introduce a method of FT-ICR analyzer cell prototyping utilizing printed circuit boards at modest vacuum conditions. This method allows for inexpensive devices to be readily fabricated and tested over short intervals and should open the field to laboratories lacking or unable to access high performance machine shop facilities because of the required financial investment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Marshall, A.G., Hendrickson, C.L., Jackson, G.S.: Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998)

    Article  CAS  Google Scholar 

  2. McIver, R.T.: A trapped ion analyzer cell for ion cyclotron resonance spectroscopy. Rev. Sci. Instrum. 41, 555–558 (1970)

  3. Beu, S.C., Laude, D.A.: Open trapped ion cell geometries for Fourier-transform ion-cyclotron resonance mass-spectrometry. Int. J. Mass Spectrom. Ion Process. 112, 215–230 (1992)

    Article  CAS  Google Scholar 

  4. Beu, S.C., Laude, D.A.: Elimination of axial ejection during excitation with a capacitively coupled open trapped-ion cell for Fourier-transform ion-cyclotron resonance mass spectrometry. Anal. Chem. 64, 177–180 (1992)

    Article  CAS  Google Scholar 

  5. Tolmachev, A.V., Robinson, E.W., Wu, S., Kang, H., Lourette, N.M., Pasa-Tolic, L., Smith, R.D.: Trapped-ion cell with improved DC potential harmonicity for FT-ICR MS. J. Am. Soc. Mass Spectrom. 19, 586–597 (2008)

    Article  CAS  Google Scholar 

  6. Gabrielse, G., Haarsma, L., Rolston, S.L.: Open-endcap Penning traps for high precision experiments. Int. J. Mass Spectrom. Ion Process. 88, 319–332 (1989)

    Article  CAS  Google Scholar 

  7. Brustkern, A.M., Rempel, D.L., Gross, M.L.: An electrically compensated trap designed to eighth order for FT-ICR mass spectrometry. J. Am. Soc. Mass Spectrom. 19, 1281–1285 (2008)

    Article  CAS  Google Scholar 

  8. Boldin, I.A., Nikolaev, E.N.: Fourier transform ion cyclotron resonance cell with dynamic harmonization of the electric field in the whole volume by shaping of the excitation and detection electrode assembly. Rapid Commun. Mass Spectrom. 25, 122–126 (2011)

    Article  CAS  Google Scholar 

  9. Kostyukevich, Y., Vladimirov, G., Nikolaev, E.: Dynamically harmonized FT-ICR cell with specially shaped electrodes for compensation of inhomogeneity of the magnetic field. Computer simulations of the electric field and ion motion dynamics. J. Am. Soc. Mass Spectrom. 23, 2198–2207 (2012)

    Article  CAS  Google Scholar 

  10. Dahl, D.A.: SIMION for the personal computer in reflection. Int. J. Mass Spectrom. 200, 3–25 (2000)

    Article  CAS  Google Scholar 

  11. Nikolaev, E.N., Heeren, R.M.A., Popov, A.M., Pozdneev, A.V., Chingin, K.S.: Realistic modeling of ion cloud motion in a fourier transform ion cyclotron resonance cell by use of a particle-in-cell approach. Rapid Commun. Mass Spectrom. 21, 3527–3546 (2007)

    Article  CAS  Google Scholar 

  12. Ibrahim, Y., Baker, E.S., Danielson III, W.F., Norheim, R., Prior, D.C., Anderson, G.A., Belov, M.E., Smith, R.D.: Development of a New Ion Mobility (Quadrupole) Time-of-Flight Mass Spectrometer. Accepted to Intl. J. Mass Spectrom. (2014)

  13. Olsen, J.V., Schwartz, J.C., Griep-Raming, J., Nielsen, M.L., Damoc, E., Denisov, E., Lange, O., Remes, P., Taylor, D., Splendore, M., Wouters, E.R., Senko, M., Makarov, A., Mann, M., Horning, S.: A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol. Cell Proteom. 8, 2759–2769 (2009)

    Article  CAS  Google Scholar 

  14. Austin, D.E., Wang, M., Tolley, S.E., Maas, J.D., Hawkins, A.R., Rockwood, A.L., Tolley, H.D., Lee, E.D., Lee, M.L.: Halo ion trap mass spectrometer. Anal. Chem. 79, 2927–2932 (2007)

    Article  CAS  Google Scholar 

  15. Schury, P., Okada, K., Shchepunov, S., Sonoda, T., Takamine, A., Wada, M., Wollnik, H., Yamazaki, Y.: Multi-reflection time-of-flight mass spectrograph for short-lived radioactive ions. Eur. Phys. J. A 42, 343–349 (2009)

    Article  CAS  Google Scholar 

  16. Weisbrod, C.R., Kaiser, N.K., Skulason, G.E., Bruce, J.E.: Excite-coupled trapping ring electrode cell (eTREC): radial trapping field control, linearized excitation, and improved detection. Anal. Chem. 82, 6281–6286 (2010)

    Article  CAS  Google Scholar 

  17. Caravatti, P., Allemann, M.: The ‘infinity cell’: a new trapped-ion cell with radiofrequency covered trapping electrodes for Fourier transform ion cyclotron resonance mass spectrometry. Org. Mass Spectrom. 26, 514–518 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

F.E.L. III gratefully acknowledges the contributions of Dick Smith to the technological advancement of FT-ICR MS and mass spectrometry in general. This work was supported by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research. Experiments were performed in the Environmental Molecular Science Laboratory (EMSL), a DOE national scientific user facility located on the campus of Pacific Northwest National Laboratory (PNNL) in Richland, WA, USA. PNNL is a multi-program national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RLO 1830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franklin E. Leach III.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leach, F.E., Norheim, R., Anderson, G. et al. Application of Printed Circuit Board Technology to FT-ICR MS Analyzer Cell Construction and Prototyping. J. Am. Soc. Mass Spectrom. 25, 2069–2072 (2014). https://doi.org/10.1007/s13361-014-0952-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0952-6

Key words

Navigation