Plasma-Spray Ionization (PLASI): A Multimodal Atmospheric Pressure Ion Source for Liquid Stream Analysis

  • Adam Kaylor
  • Prabha Dwivedi
  • Jennifer J. Pittman
  • María Eugenia Monge
  • Guilong Cheng
  • Shelly Li
  • Facundo M. Fernández
Research Article


A new ion generation method, named plasma-spray ionization (PLASI) for direct analysis of liquid streams, such as in continuous infusion experiments or liquid chromatography (LC), is reported. PLASI addresses many of the analytical limitations of electrospray ionization (ESI) and has potential for real time process stream analysis and reaction monitoring under atmospheric conditions in non-ESI friendly scenarios. In PLASI-mass spectrometry (MS), the liquid stream is pneumatically nebulized and partially charged at low voltages; the resultant aerosol is thus entrained with a gaseous plasma plume from a distal glow discharge prior to MS detection. PLASI-MS not only overcomes ESI-MS limitations but also generates simpler mass spectra with minimal adduct and cluster formation. PLASI utilizes the atomization capabilities of an ESI sprayer operated below the ESI threshold to generate gas-phase aerosols that are then ionized by the plasma stream. When operated at or above the ESI threshold, ionization by traditional ESI mechanisms is achieved. The multimodal nature of the technique enables readily switching between plasma and ESI operation. It is expected that PLASI will enable analyzing a wide range of analytes in complex matrices and less-restricted solvent systems, providing more flexibility than that achievable by ESI alone.


DART Mass spectrometry Plasma ionization Process and reaction monitoring Liquid-phase separations 



The authors gratefully acknowledge financial support from Pfizer through a joint PTxPS Alliance Project, and additional support from the US Pharmacopeial Convention to AK in the form of a Global Fellowship.


  1. 1.
    Cody, R.B., Laramee, J.A., Durst, H.D.: Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77, 2297–2302 (2005)CrossRefGoogle Scholar
  2. 2.
    Gross, J.H.: Direct analysis in real time-a critical review on DART-MS. Anal. Bioanal. Chem. 406, 63–80 (2014)CrossRefGoogle Scholar
  3. 3.
    Harris, G.A., Hostetler, D.M., Hampton, C.Y., Fernandez, F.M.: Comparison of the internal energy deposition of direct analysis in real time and electrospray ionization time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 855–863 (2010)CrossRefGoogle Scholar
  4. 4.
    Monge, M.E., Harris, G.A., Dwivedi, P., Fernandez, F.M.: Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem. Rev. (Washington, DC) 113, 2269–2308 (2013)CrossRefGoogle Scholar
  5. 5.
    Song, L., Gibson, S.C., Bhandari, D., Cook, K.D., Bartmess, J.E.: Ionization mechanism of positive-ion direct analysis in real time: a transient microenvironment concept. Anal. Chem. 81, 10080–10088 (2009)CrossRefGoogle Scholar
  6. 6.
    Harris, G.A., Fernandez, F.M.: Simulations and experimental investigation of atmospheric transport in an ambient metastable-induced chemical ionization source. Anal. Chem. 81, 322–329 (2009)CrossRefGoogle Scholar
  7. 7.
    Tang, K., Page, J.S., Smith, R.D.: Charge competition and the linear dynamic range of detection in electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 15, 1416–1423 (2004)CrossRefGoogle Scholar
  8. 8.
    Page, J.S., Kelly, R.T., Tang, K., Smith, R.D.: Ionization and transmission efficiency in an electrospray ionization–mass spectrometry interface. J. Am. Soc. Mass Spectrom. 18, 1582–1590 (2007)CrossRefGoogle Scholar
  9. 9.
    Hanold, K.A., Fischer, S.M., Cormia, P.H., Miller, C.E., Syage, J.A.: Atmospheric pressure photoionization. 1. General properties for LC/MS. Anal. Chem. 76, 2842–2851 (2004)CrossRefGoogle Scholar
  10. 10.
    Eberherr, W., Buchberger, W., Hertsens, R., Klampfl, C.W.: Investigations on the coupling of high-performance liquid chromatography to direct analysis in real time mass spectrometry. Anal. Chem. 82, 5792–5796 (2010)CrossRefGoogle Scholar
  11. 11.
    Beißmann, S., Buchberger, W., Hertsens, R., Klampfl, C.W.: High-performance liquid chromatography coupled to direct analysis in real time mass spectrometry: investigations on gradient elution and influence of complex matrices on signal intensities. J. Chromatogr. A 1218, 5180–5186 (2011)CrossRefGoogle Scholar
  12. 12.
    Chang, C.L., Xu, G.G., Bai, Y., Zhang, C.S., Li, X.J., Li, M., Liu, Y., Liu, H.W.: Online coupling of capillary electrophoresis with direct analysis in real time mass spectrometry. Anal. Chem. 85, 170–176 (2013)CrossRefGoogle Scholar
  13. 13.
    Hayati, I., Bailey, A.I., Tadros, T.F.: Investigations into the mechanisms of electrohydrodynamic spraying of liquids. 1. Effect of electric-field and the environment on pendant drops and factors affecting the formation of stable jets and atomization. J. Colloid Interface Sci. 117, 205–221 (1987)CrossRefGoogle Scholar
  14. 14.
    Zeleny, J.: Instability of electrified liquid surfaces. Phys. Rev. 10, 1–6 (1917)CrossRefGoogle Scholar
  15. 15.
    Kebarle, P., Peschke, M.: On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. Anal. Chim. Acta. 406, 11–35 (2000)CrossRefGoogle Scholar
  16. 16.
    Monge, M.E., Harris, G.A., Dwivedi, P., Fernandez, F.M.: Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem. Rev. (2013)Google Scholar
  17. 17.
    Kebarle, P., Verkerk, U.H.: Electrospray and MALDI Mass Spectrometry. Wiley, Hoboken Second edn. 4–38 (2010) Google Scholar

Copyright information

© American Society for Mass Spectrometry 2014

Authors and Affiliations

  • Adam Kaylor
    • 1
  • Prabha Dwivedi
    • 1
  • Jennifer J. Pittman
    • 1
  • María Eugenia Monge
    • 1
    • 3
  • Guilong Cheng
    • 2
    • 4
  • Shelly Li
    • 2
  • Facundo M. Fernández
    • 1
  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Pfizer Analytical R&D, Pharmaceutical ScienceGrotonUSA
  3. 3.Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad de Buenos AiresArgentina
  4. 4.Alexion Pharmaceutical Inc.CheshireUSA

Personalised recommendations