Journal of The American Society for Mass Spectrometry

, Volume 25, Issue 9, pp 1622–1627 | Cite as

Ion Trap Electric Field Characterization Using Slab Coupled Optical Fiber Sensors

  • Spencer Chadderdon
  • LeGrand Shumway
  • Andrew Powell
  • Ailin Li
  • Daniel E. Austin
  • Aaron R. Hawkins
  • Richard H. Selfridge
  • Stephen M. Schultz
Research Article

Abstract

This paper presents a method for characterizing electric field profiles of radio frequency (rf) quadrupole ion trap structures using sensors based on slab coupled optical-fiber sensor (SCOS) technology. The all-dielectric and virtually optical fiber-sized SCOS fits within the compact environment required for ion traps and is able to distinguish electric field orientation and amplitude with minimal perturbation. Measurement of the fields offers insight into the functionality of traps, which may not be obtainable solely by performing simulations. The SCOS accurately mapped the well-known field profiles within a commercially available three-dimensional quadrupole ion trap (Paul trap). The results of this test allowed the SCOS to map the more complicated fields within the coaxial ion trap with a high degree of confidence as to the accuracy of the measurement.

Key words

Electric field Paul trap Coaxial trap Characterization 

References

  1. 1.
    March, R.E.: An introduction to quadrupole ion trap mass spectrometry. J. Mass Spectrom. 32, 351–369 (1997)CrossRefGoogle Scholar
  2. 2.
    Kornienko, O., Reilly, P.T.A., Whitten, W.B., Ramsey, J.M.: Micro ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 13, 50–53 (1999)CrossRefGoogle Scholar
  3. 3.
    Moxom, J., Reilly, P.T.A., Whitten, W.B., Ramsey, J.M.: Analysis of volatile organic compounds in air with a micro ion trap mass analyzer. Anal. Chem. 75, 373–3743 (2003)CrossRefGoogle Scholar
  4. 4.
    Ouyang, Z., Wu, G., Song, Y., Li, H., Plass, W.R., Cooks, R.G.: Rectilinear ion trap: concepts, calculations, and analytical performance of a new mass analyzer. Anal. Chem. 76, 4595–4605 (2004)CrossRefGoogle Scholar
  5. 5.
    Chaudhary, A., van Amerom, F.H.W., Short, R.T., Bhansali, S.: Fabrication and testing of a miniature cylindrical ion trap mass spectrometer constructed from low temperature co-fired ceramics. Int. J. Mass Spectrom. 251, 32–39 (2006)CrossRefGoogle Scholar
  6. 6.
    Lammert, S.A., Rockwood, A.A., Wang, M., Lee, M.L., Lee, E.D., Tolley, S.E., Oliphant, J.R., Jones, J.L., Waite, R.W.: Miniature toroidal radio frequency ion trap mass analyzer. J. Am. Soc. Mass Spectrom. 17, 916–922 (2006)CrossRefGoogle Scholar
  7. 7.
    Pau, S., Pai, C.S., Low, Y.L., Moxom, J., Reilly, P.T.A., Whitten, W.B., Ramsey, J.M.: Microfabricated quadrupole ion trap for mass spectrometer applications. Phys. Rev. Lett. 96, 120801 (2006)CrossRefGoogle Scholar
  8. 8.
    Cruz, D., Chang, J.P., Fico, M., Guymon, A.J., Austin, D.E., Blain, M.G.: Design, microfabrication, and analysis of micrometer-sized cylindrical ion trap arrays. Rev. Sci. Instrum. 78, 015107 (2007)CrossRefGoogle Scholar
  9. 9.
    Keil, A., Talaty, N., Janfelt, C., Noll, R.J., Gao, L., Ouyang, Z., Cooks, R.G.: Ambient mass spectrometry with a handheld mass spectrometer at high pressure. Anal. Chem. 79, 7734–7739 (2007)CrossRefGoogle Scholar
  10. 10.
    Chaudhary, A., van Amerom, F., Short, R.T.: Development of microfabricated cylindrical ion trap mass spectrometer arrays. J. Microelectromech. Syst. 18, 442–448 (2009)CrossRefGoogle Scholar
  11. 11.
    Fico, M., Maas, J.D., Smith, S.A., Costa, A.B., Ouyang, Z., Chappell, W.J., Cooks, R.G.: Circular arrays of polymer-based miniature rectilinear ion traps. Analyst (Cambridge, U. K.) 134, 1338–1347 (2009)CrossRefGoogle Scholar
  12. 12.
    Ouyang, Z., Noll, R.J., Cooks, R.G.: Handheld miniature ion trap mass spectrometers. Anal. Chem. 81, 2421–2425 (2009)CrossRefGoogle Scholar
  13. 13.
    Jesseph, A.V., Fox, J.D., Verbeck Iv, G.F.: Ion isolation and collision-induced dissociation in a 0.5 mm rο cylindrical ion trap. Int. J. Mass Spectrom. 295, 149–152 (2010)Google Scholar
  14. 14.
    Taylor, N., Austin, D.E.: A simplified toroidal ion trap mass analyzer. Int. J. Mass Spectrom. 321/322, 25–32 (2012)CrossRefGoogle Scholar
  15. 15.
    Wang, L., Xu, F., Ding, C.-F.: Performance and geometry optimization of the ceramic-based rectilinear ion traps. Rapid Commun. Mass Spectrom. 26, 2068–2074 (2012)CrossRefGoogle Scholar
  16. 16.
    Tian, Y., Higgs, J., Li, A., Barney, B., Austin, D.E.: How far can ion trap miniaturization go? Parameter scaling and space-charge limits for very small cylindrical ion traps. J. Mass Spectrom. 49, 233–240 (2014)CrossRefGoogle Scholar
  17. 17.
    Xu, W., Chappell, W.J., Cooks, R.G., Ouyang, Z.: Characterization of electrode surface roughness and its impact on ion trap mass analysis. J. Mass Spectrom. 44, 353–360 (2009)CrossRefGoogle Scholar
  18. 18.
    Austin, D.E., Wang, M., Tolley, S.E., Maas, J.D., Hawkins, A.R., Rockwood, A.L., Tolley, H.D., Lee, E.D., Lee, M.L.: Halo Ion Trap Mass Spectrometer. Anal. Chem. 79, 2927–2932 (2007)CrossRefGoogle Scholar
  19. 19.
    Paul, W.S.H.: Ein neues Massenspektrometer ohne Magnetfeld. Zeitschrift für Naturforschung A8(7), 448–450 (1953)Google Scholar
  20. 20.
    Peng, Y., Hansen, B.J., Quist, H., Zhang, Z., Wang, M., Hawkins, A.R., Austin, D.E.: Coaxial ion trap mass spectrometer: concentric toroidal and quadrupolar trapping regions. Anal. Chem. 83, 5578–5584 (2011)CrossRefGoogle Scholar
  21. 21.
    Kim, K.T., Yoon, D.S., Kwoen, G.: Optical properties of side-polished polarization maintaining fiber coupled with a high index planar waveguide. Opt. Commun. 230, 137–144 (2004)CrossRefGoogle Scholar
  22. 22.
    Millar, C.A., Brierley, M.C., Mallinson, R.S.: Exposed-core single-mode-fiber channel-dropping filter using high-index overlay waveguide. Opt. Lett. 12, 284–286 (1987)CrossRefGoogle Scholar
  23. 23.
    Gibson, R., Selfridge, R., Schultz, S.: Electric field sensor array from cavity resonance between optical D-fiber and multiple slab waveguides. Appl. Opt. 48, 3695–3701 (2009)CrossRefGoogle Scholar
  24. 24.
    Chadderdon, S., Gibson, R., Selfridge, R.H., Schultz, S.M., Wang, W.C., Forber, R., Luo, J., Jen, A.K.: Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab. Appl. Opt. 50, 3505–3512 (2011)CrossRefGoogle Scholar
  25. 25.
    Perry, D., Chadderdon, S., Forber, R., Wang, W., Selfridge, R., Schultz, S.: Multiaxis electric field sensing using slab coupled optical sensors. Appl. Opt. 52, 1968–1977 (2013)CrossRefGoogle Scholar
  26. 26.
    Chadderdon, S., Woodard, L., Perry, D., Selfridge, R.H., Schultz, S.M.: Improvements in electric field sensor sensitivity by exploiting a tangential field condition. Appl. Opt. 52, 5742–5747 (2013)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2014

Authors and Affiliations

  • Spencer Chadderdon
    • 1
  • LeGrand Shumway
    • 1
  • Andrew Powell
    • 1
  • Ailin Li
    • 2
  • Daniel E. Austin
    • 2
  • Aaron R. Hawkins
    • 1
  • Richard H. Selfridge
    • 1
  • Stephen M. Schultz
    • 1
  1. 1.Department of Electrical and Computer EngineeringBrigham Young UniversityProvoUSA
  2. 2.Department of Chemistry and BiochemistryBrigham Young UniversityProvoUSA

Personalised recommendations