Skip to main content
Log in

Ion Trap Electric Field Characterization Using Slab Coupled Optical Fiber Sensors

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

This paper presents a method for characterizing electric field profiles of radio frequency (rf) quadrupole ion trap structures using sensors based on slab coupled optical-fiber sensor (SCOS) technology. The all-dielectric and virtually optical fiber-sized SCOS fits within the compact environment required for ion traps and is able to distinguish electric field orientation and amplitude with minimal perturbation. Measurement of the fields offers insight into the functionality of traps, which may not be obtainable solely by performing simulations. The SCOS accurately mapped the well-known field profiles within a commercially available three-dimensional quadrupole ion trap (Paul trap). The results of this test allowed the SCOS to map the more complicated fields within the coaxial ion trap with a high degree of confidence as to the accuracy of the measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. March, R.E.: An introduction to quadrupole ion trap mass spectrometry. J. Mass Spectrom. 32, 351–369 (1997)

    Article  CAS  Google Scholar 

  2. Kornienko, O., Reilly, P.T.A., Whitten, W.B., Ramsey, J.M.: Micro ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 13, 50–53 (1999)

    Article  CAS  Google Scholar 

  3. Moxom, J., Reilly, P.T.A., Whitten, W.B., Ramsey, J.M.: Analysis of volatile organic compounds in air with a micro ion trap mass analyzer. Anal. Chem. 75, 373–3743 (2003)

    Article  Google Scholar 

  4. Ouyang, Z., Wu, G., Song, Y., Li, H., Plass, W.R., Cooks, R.G.: Rectilinear ion trap: concepts, calculations, and analytical performance of a new mass analyzer. Anal. Chem. 76, 4595–4605 (2004)

    Article  CAS  Google Scholar 

  5. Chaudhary, A., van Amerom, F.H.W., Short, R.T., Bhansali, S.: Fabrication and testing of a miniature cylindrical ion trap mass spectrometer constructed from low temperature co-fired ceramics. Int. J. Mass Spectrom. 251, 32–39 (2006)

    Article  CAS  Google Scholar 

  6. Lammert, S.A., Rockwood, A.A., Wang, M., Lee, M.L., Lee, E.D., Tolley, S.E., Oliphant, J.R., Jones, J.L., Waite, R.W.: Miniature toroidal radio frequency ion trap mass analyzer. J. Am. Soc. Mass Spectrom. 17, 916–922 (2006)

    Article  CAS  Google Scholar 

  7. Pau, S., Pai, C.S., Low, Y.L., Moxom, J., Reilly, P.T.A., Whitten, W.B., Ramsey, J.M.: Microfabricated quadrupole ion trap for mass spectrometer applications. Phys. Rev. Lett. 96, 120801 (2006)

    Article  CAS  Google Scholar 

  8. Cruz, D., Chang, J.P., Fico, M., Guymon, A.J., Austin, D.E., Blain, M.G.: Design, microfabrication, and analysis of micrometer-sized cylindrical ion trap arrays. Rev. Sci. Instrum. 78, 015107 (2007)

    Article  CAS  Google Scholar 

  9. Keil, A., Talaty, N., Janfelt, C., Noll, R.J., Gao, L., Ouyang, Z., Cooks, R.G.: Ambient mass spectrometry with a handheld mass spectrometer at high pressure. Anal. Chem. 79, 7734–7739 (2007)

    Article  CAS  Google Scholar 

  10. Chaudhary, A., van Amerom, F., Short, R.T.: Development of microfabricated cylindrical ion trap mass spectrometer arrays. J. Microelectromech. Syst. 18, 442–448 (2009)

    Article  CAS  Google Scholar 

  11. Fico, M., Maas, J.D., Smith, S.A., Costa, A.B., Ouyang, Z., Chappell, W.J., Cooks, R.G.: Circular arrays of polymer-based miniature rectilinear ion traps. Analyst (Cambridge, U. K.) 134, 1338–1347 (2009)

    Article  CAS  Google Scholar 

  12. Ouyang, Z., Noll, R.J., Cooks, R.G.: Handheld miniature ion trap mass spectrometers. Anal. Chem. 81, 2421–2425 (2009)

    Article  CAS  Google Scholar 

  13. Jesseph, A.V., Fox, J.D., Verbeck Iv, G.F.: Ion isolation and collision-induced dissociation in a 0.5 mm rο cylindrical ion trap. Int. J. Mass Spectrom. 295, 149–152 (2010)

  14. Taylor, N., Austin, D.E.: A simplified toroidal ion trap mass analyzer. Int. J. Mass Spectrom. 321/322, 25–32 (2012)

    Article  Google Scholar 

  15. Wang, L., Xu, F., Ding, C.-F.: Performance and geometry optimization of the ceramic-based rectilinear ion traps. Rapid Commun. Mass Spectrom. 26, 2068–2074 (2012)

    Article  CAS  Google Scholar 

  16. Tian, Y., Higgs, J., Li, A., Barney, B., Austin, D.E.: How far can ion trap miniaturization go? Parameter scaling and space-charge limits for very small cylindrical ion traps. J. Mass Spectrom. 49, 233–240 (2014)

    Article  CAS  Google Scholar 

  17. Xu, W., Chappell, W.J., Cooks, R.G., Ouyang, Z.: Characterization of electrode surface roughness and its impact on ion trap mass analysis. J. Mass Spectrom. 44, 353–360 (2009)

    Article  CAS  Google Scholar 

  18. Austin, D.E., Wang, M., Tolley, S.E., Maas, J.D., Hawkins, A.R., Rockwood, A.L., Tolley, H.D., Lee, E.D., Lee, M.L.: Halo Ion Trap Mass Spectrometer. Anal. Chem. 79, 2927–2932 (2007)

    Article  CAS  Google Scholar 

  19. Paul, W.S.H.: Ein neues Massenspektrometer ohne Magnetfeld. Zeitschrift für Naturforschung A8(7), 448–450 (1953)

    Google Scholar 

  20. Peng, Y., Hansen, B.J., Quist, H., Zhang, Z., Wang, M., Hawkins, A.R., Austin, D.E.: Coaxial ion trap mass spectrometer: concentric toroidal and quadrupolar trapping regions. Anal. Chem. 83, 5578–5584 (2011)

    Article  CAS  Google Scholar 

  21. Kim, K.T., Yoon, D.S., Kwoen, G.: Optical properties of side-polished polarization maintaining fiber coupled with a high index planar waveguide. Opt. Commun. 230, 137–144 (2004)

    Article  CAS  Google Scholar 

  22. Millar, C.A., Brierley, M.C., Mallinson, R.S.: Exposed-core single-mode-fiber channel-dropping filter using high-index overlay waveguide. Opt. Lett. 12, 284–286 (1987)

    Article  CAS  Google Scholar 

  23. Gibson, R., Selfridge, R., Schultz, S.: Electric field sensor array from cavity resonance between optical D-fiber and multiple slab waveguides. Appl. Opt. 48, 3695–3701 (2009)

    Article  CAS  Google Scholar 

  24. Chadderdon, S., Gibson, R., Selfridge, R.H., Schultz, S.M., Wang, W.C., Forber, R., Luo, J., Jen, A.K.: Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab. Appl. Opt. 50, 3505–3512 (2011)

    Article  Google Scholar 

  25. Perry, D., Chadderdon, S., Forber, R., Wang, W., Selfridge, R., Schultz, S.: Multiaxis electric field sensing using slab coupled optical sensors. Appl. Opt. 52, 1968–1977 (2013)

    Article  Google Scholar 

  26. Chadderdon, S., Woodard, L., Perry, D., Selfridge, R.H., Schultz, S.M.: Improvements in electric field sensor sensitivity by exploiting a tangential field condition. Appl. Opt. 52, 5742–5747 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Schultz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chadderdon, S., Shumway, L., Powell, A. et al. Ion Trap Electric Field Characterization Using Slab Coupled Optical Fiber Sensors. J. Am. Soc. Mass Spectrom. 25, 1622–1627 (2014). https://doi.org/10.1007/s13361-014-0938-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0938-4

Key words

Navigation