Skip to main content
Log in

Studying the Chemistry of Cationized Triacylglycerols Using Electrospray Ionization Mass Spectrometry and Density Functional Theory Computations

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Analysis of triacylglycerols (TAGs), found as complex mixtures in living organisms, is typically accomplished using liquid chromatography, often coupled to mass spectrometry. TAGs, weak bases not protonated using electrospray ionization, are usually ionized by adduct formation with a cation, including those present in the solvent (e.g., Na+). There are relatively few reports on the binding of TAGs with cations or on the mechanisms by which cationized TAGs fragment. This work examines binding efficiencies, determined by mass spectrometry and computations, for the complexation of TAGs to a range of cations (Na+, Li+, K+, Ag+, NH4 +). While most cations bind to oxygen, Ag+ binding to unsaturation in the acid side chains is significant. The importance of dimer formation, [2TAG + M]+ was demonstrated using several different types of mass spectrometers. From breakdown curves, it became apparent that two or three acid side chains must be attached to glycerol for strong cationization. Possible mechanisms for fragmentation of lithiated TAGs were modeled by computations on tripropionylglycerol. Viable pathways were found for losses of neutral acids and lithium salts of acids from different positions on the glycerol moiety. Novel lactone structures were proposed for the loss of a neutral acid from one position of the glycerol moiety. These were studied further using triple-stage mass spectrometry (MS3). These lactones can account for all the major product ions in the MS3 spectra in both this work and the literature, which should allow for new insights into the challenging analytical methods needed for naturally occurring TAGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Figure 6
Scheme 5

Similar content being viewed by others

References

  1. Hirschmann, H., Hanson, K.R.: The differentiation of stereoheterotopic groups. Eur J Biochem 22, 301–309 (1971)

    Article  CAS  Google Scholar 

  2. Christensen, M.S., Høy, C.-E., Becker, C.C., Redgrave, T.G.: Intestinal absorption and lymphatic transport of eicosapentaenoic (EPA), docosahexaenoic (DHA), and decanoic acids: dependence on intramolecular triacylglycerol structure. Am J Clin Nutr 61, 56–61 (1995)

    CAS  Google Scholar 

  3. Sadou, H., Léger, C.L., Descomps, B., Barjon, J.-N., Monnier, L., Crastes de Paulet, A.: Differential incorporation of fish-oil eicosapentaenoate and docosahexadecanoate into lipids of lipoprotein fractions as related to their glyceryl esterification: a short-term (postprandial) and long-term study in healthy humans. Am J Clin Nutr 62, 1193–1200 (1995)

    CAS  Google Scholar 

  4. Leskinen, H., Suomela, J.-P., Kallio, H.: Quantification of triacylglycerol regioisomers by ultra-high-performance liquid chromatography and ammonia negative ion atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 24, 1–5 (2010)

    Article  CAS  Google Scholar 

  5. Lísa, M., Velínská, H., Holčapek, M.: Regioisomeric characterization of triacylglycerols using silver-ion HPLC/MS and randomization synthesis of standards. Anal Chem 81, 3903–3910 (2009)

    Article  Google Scholar 

  6. Lévêque, N.L., Héron, S., Tchapla, A.: Regioisomer characterization of triacylglycerols by non-aqueous reversed-phase liquid chromatography/electrospray ionization mass spectrometry using silver nitrate as a post-column reagent. J Mass Spectrom 45, 284–296 (2010)

    Article  Google Scholar 

  7. Leskinen, H., Suomela, J.-P., Pinta, J., Kallio, H.: Regioisomeric structure determination of α- and γ-linolenoyldilinoleoylglycerol in blackcurrant seed oil by silver ion high-performance liquid chromatography and mass spectrometry. Anal Chem 80, 5788–5793 (2008)

    Article  CAS  Google Scholar 

  8. Adlof, R., List, G.: Analysis of triglyceride isomers by silver-ion high-performance liquid chromatography Effect of column temperature on retention times. J Chromatogr A 1046, 109–113 (2004)

    Article  CAS  Google Scholar 

  9. Lísa, M., Holčapek, M., Boháč, M.: Statistical evaluation of triacylglycerol composition in plant oils based on high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry data. J Agric Food Chem 57, 6888–6898 (2009)

    Article  Google Scholar 

  10. Byrdwell, W.C., Neff, W.E.: Dual parallel electrospray ionization and atmospheric pressure chemical ionization mass spectrometry (MS), MS2, and MS3 for the analysis of triacylglycerols and triacylglycerol oxidation products. Rapid Commun Mass Spectrom 16, 300–319 (2002)

    Article  CAS  Google Scholar 

  11. Leskinen, H., Suomela, J.-P., Kallio, H.: Quantification of triacylglycerol regioisomers in oils and fat using different mass spectrometric and liquid chromatographic methods. Rapid Commun Mass Spectrom 21, 2361–2373 (2007)

    Article  CAS  Google Scholar 

  12. Mottram, H.R., Crossman, Z.M., Evershed, R.P.: Regiospecific characterization of the triacylglycerols in animal fats using high performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Analyst 126, 1018–1024 (2001)

    Article  CAS  Google Scholar 

  13. Malone, M., Evans, J.J.: Determining the relative amounts of positional isomers in complex mixtures of triglycerides using reversed-phase high-performance liquid chromatography-tandem mass spectrometry. Lipids 39, 273–284 (2004)

    Article  CAS  Google Scholar 

  14. Hsu, F.-F., Turk, J.: Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom 10, 587–599 (1999)

    Article  CAS  Google Scholar 

  15. Hsu, F.-F., Turk, J.: Electrospray ionization multiple-stage linear ion-trap mass spectrometry for structural elucidation of triacylglycerols: assignment of fatty acyl groups on the glycerol backbone and location of double bonds. J Am Soc Mass Spectrom 21, 657–669 (2010)

    Article  CAS  Google Scholar 

  16. Cubero Herrera, L., Potvin, M.A., Melanson, J.E.: Quantitative analysis of positional isomers of triacylglycerols via electrospray ionization tandem mass spectrometry of sodiated adducts. Rapid Commun Mass Spectrom 24, 2745–2752 (2010)

    Article  Google Scholar 

  17. Han, X., Gross, R.W.: Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24, 367–417 (2005)

    Article  CAS  Google Scholar 

  18. Cubero Herrera, L., Ramaley, L., Potvin, M.A., Melanson, J.E.: A method for determining regioisomer abundances of polyunsaturated triacylglycerols in omega-3 enriched fish oils using reversed-phase liquid chromatography and triple-stage mass spectrometry. Food Chem 139, 655–662 (2013)

    Article  CAS  Google Scholar 

  19. Renaud, J.B., Overton, S., Mayer, P.M.: Energy and entropy at play in competitive dissociations: the case of uneven positional dissociation of ionized triglycerides. Int J Mass Spectrom 352, 77–86 (2013)

    Article  CAS  Google Scholar 

  20. Kim, Y.H., So, K.-Y., Limb, J.-K., Jhon, G.-J., Han, S.-Y.: Identification of triacylglycerols containing two short-chain fatty acids at sn-2 and sn-3 positions from bovine udder by fast atom bombardment tandem mass spectrometry. Rapid Commun Mass Spectrom 14, 2230–2237 (2000)

    Article  CAS  Google Scholar 

  21. Cheng, C., Gross, M.L., Pittenauer, E.: Complete structural elucidation of triacylglycerols by tandem sector mass spectrometry. Anal Chem 70, 4417–4426 (1998)

    Article  CAS  Google Scholar 

  22. Pittenauer, E., Allmaier, G.: The renaissance of high-energy CID for structural elucidation of complex lipids: MALDI-TOF/RTOF-MS of alkali cationized triacylglycerols. J Am Soc Mass Spectrom 20, 1037–1047 (2009)

    Article  CAS  Google Scholar 

  23. Kubo, A., Satoh, T., Itoh, Y., Hashimoto, M., Tamura, J., Cody, R.B.: Structural analysis of triacylglycerols by using a MALDI-TOF/TOF system with monoisotopic precursor selection. J Am Soc Mass Spectrom 24, 684–689 (2013)

    Article  CAS  Google Scholar 

  24. McAnoy, A.M., Wu, C.C., Murphy, R.C.: Direct qualitative analysis of triacylglycerols by electrospray mass spectrometry using a linear ion trap. J Am Soc Mass Spectrom 16, 1498–1509 (2005)

    Article  CAS  Google Scholar 

  25. Murphy, R.C., Axelsen, P.H.: Mass spectrometric analysis of long-chain lipids. Mass Spectrom Rev 30, 579–599 (2011)

    Article  CAS  Google Scholar 

  26. Romanov, V., Siu, C.-K., Verkerk, U.H., Hopkinson, A.C., Siu, K.W.M.: Bond dissociation energies of solvated silver(i)-amide complexes: competitive threshold collision-induced dissociations and calculations. J Phys Chem A 114, 6964–6971 (2010)

    Article  CAS  Google Scholar 

  27. Tomasi, J., Mennucci, B., Cammi, R.: Quantum mechanical continuum solvation models. Chem Rev 105, 2999–3093 (2005)

    Article  CAS  Google Scholar 

  28. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari. K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 09, Revision A.02, Gaussian, Inc.: Wallingford CT (2009)

  29. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  30. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  31. Petersson, G.A., Bennett, A., Tensfeldt, T.G., Al-Laham, M.A., Shirley, W.A., Mantzaris, J.: A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys 89, 2193–2218 (1988)

    Article  CAS  Google Scholar 

  32. Petersson, G.A., Al-Laham, M.A.: A complete basis set model chemistry. II. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys 94, 6081–6090 (1991)

    Article  CAS  Google Scholar 

  33. Godbout, N., Salahub, D.R., Andzelm, J., Wimmer, E.: Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can J Chem 70, 560–571 (1992)

    Article  CAS  Google Scholar 

  34. Wheelock, C.E., Colvin, M.E., Sanborn, J.R.: mock, B.D.: Substituted 3-phenylpropenoates and related analogs: electron ionization mass spectral fragmentation and density functional theory calculations. J Mass Spectrom 43, 1053–1062 (2008)

    Article  CAS  Google Scholar 

  35. El Aribi, H., Shoeib, T., Ling, Y., Rodriquez, C.F., Hopkinson, A.C., Siu, K.W.M.: Binding energies of the silver ion to small oxygen-containing ligands: determination by means of density functional theory and threshold collision-induced dissociation. J Phys Chem A 106, 2908–2914 (2002)

    Article  Google Scholar 

  36. Shoeib, T., Siu, K.W.M., Hopkinson, A.C.: Silver ion binding energies of amino acids: use of theory to assess the validity of experimental silver ion basicities obtained from the kinetic method. J Phys Chem A 106, 6121–6128 (2002)

    Article  CAS  Google Scholar 

  37. Scott, A.P., Radom, L.: Harmonic vibrational frequencies: an evaluation of Hartree Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semi-empirical scale factors. J Phys Chem 100, 16502–16513 (1996)

    Article  CAS  Google Scholar 

  38. Limpanuparb, T., Punyain, K., Tantirungrotechai, Y.: A DFT investigation of methanolysis and hydrolysis of triacetin. J Mol Struct Theochem 955, 23–32 (2010)

    Article  CAS  Google Scholar 

  39. Papageorgiou, D.G., Demetropoulos, I.N., Lagaris, I.E., Papadimitriou, P.T.: How many conformers of the 1, 2, 3-propanetriol triacetate are present in gas phase and in aqueous solution? Tetrahedron 52, 677–686 (1996)

    Article  CAS  Google Scholar 

  40. Marzilli, L.A., Fay, L.B., Dionisi, F., Vouros, P.: Structural characterization of triacylglycerols using electrospray ionization-MSn ion-trap MS. J Am Oil Chem Soc 80, 195–202 (2003)

    Article  CAS  Google Scholar 

  41. Mähler, J., Persson, I.: A study of the hydration of the alkali metal ions in aqueous solution. Inorg Chem 51, 425–438 (2012)

    Article  Google Scholar 

  42. Beyer, M.K.: Hydrated metal ions in the gas phase. Mass Spectrom Rev 26, 517–541 (2007)

    Article  CAS  Google Scholar 

  43. Tunell, I., Lim, C.: Factors governing the metal coordination number in isolated group IA and IIA metal hydrates. Inorg Chem 45, 4811–4819 (2006)

    Article  CAS  Google Scholar 

  44. Emmert, J., Pfluger, M., Wahl, F.: Influence of Na+ and K+ Concentration in solvents on mass spectra of peptides in LC/ESI-MS. LC•GC. Europe 17, 646–649 (2004)

    CAS  Google Scholar 

  45. Cech, N.B., Enke, C.G.: Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev 20, 362–387 (2001)

    Article  CAS  Google Scholar 

  46. Guo, B.C., Conklin, B.J., Castleman Jr., A.W.: Thermochemical Properties of Ion Complexes Na + (M), in the Gas Phase. J Am Chem Soc 111, 6506–6510 (1989)

    Article  CAS  Google Scholar 

  47. Kebarle, P.: Equilibrium studies of the solvated proton by high pressure mass spectrometry. Thermodynamic determinations and implications for the electrospray ionization process. J Mass Spectrom 32, 922–929 (1997)

    Article  CAS  Google Scholar 

  48. Kim, H.-J., Kim, S.-W., Lee, J.-K., Yoon, S.-H.: A simple and sensitive high performance liquid chromatography-electrospray ionization/mass spectrometry method for the quantification of ethyl pyruvate in rat plasma. Bull Korean Chem Soc 32, 1221–1227 (2011)

    Article  CAS  Google Scholar 

  49. Kruve, A., Kaupmees, K., Liigand, J., Oss, M., Leito, I.: Sodium adduct formation efficiency in ESI source. J Mass Spectrom 48, 695–702 (2013)

    Article  CAS  Google Scholar 

  50. Kebarle, P., Verkerk, U.H.: Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom Rev 28, 898–917 (2009)

    Article  CAS  Google Scholar 

  51. Ho, T.-L.: The hard soft acids bases (HSAB) principle and organic chemistry. Chem Rev 75, 1–20 (1975)

    Article  CAS  Google Scholar 

  52. Hunter, E.P.L., Lias, S.G.: Evaluated gas phase basicities and proton affinities of molecules: an update. J Phys Chem Ref Data 27, 413–656 (1998)

    Article  CAS  Google Scholar 

  53. Schröder, D., Budĕsínský, M., Roithová, J.: Deprotonation of p-hydroxybenzoic acid: does electrospray ionization sample solution or gas-phase structures? J Am Chem Soc 134, 15897–15905 (2012)

    Article  Google Scholar 

  54. Schröder, D.: Applications of electrospray ionization mass spectrometry in mechanistic studies and catalysis research. Acc Chem Res 45, 1521–1532 (2012)

    Article  Google Scholar 

  55. Stover, M.L., Jackson, V.E., Matus, M.H., Adams, M.A., Cassady, C.J., Dixon, D.A.: Fundamental thermochemical properties of amino acids: gas-phase and aqueous acidities and gas-phase heats of formation. J Phys Chem B 116, 2905–2916 (2012)

    Article  CAS  Google Scholar 

  56. Wang, R., Zenobi, R.: Evolution of the solvent polarity in an electrospray plume. J Am Soc Mass Spectrom 21, 378–385 (2012)

    Article  Google Scholar 

  57. Rodgers, M.T., Armentrout, P.B.: Noncovalent metal–ligand bond energies as studied by threshold collision-induced dissociation. Mass Spectrom Rev 19, 215–247 (2000)

    Article  CAS  Google Scholar 

  58. Ma, N.L., Siu, F.M., Tsang, C.W.: Interaction of alkali metal cations and short chain alcohols: effect of core size on theoretical affinities. Chem Phys Lett 322, 65–72 (2000)

    Article  CAS  Google Scholar 

  59. Lévêque, N.L., Acheampong, A., Héron, S., Tchapla, A.: Determination of triacylglycerol regioisomers using electrospray ionization-quadrupole ion trap mass spectrometry with a kinetic method. Anal Chim Acta 722, 80–86 (2012)

    Article  Google Scholar 

  60. Bird, S.S., Marur, V.R., Sniatynski, M.J., Greenberg, H.K., Kristal, B.S.: Serum lipidomics profiling using LC-MS and high-energy collisional dissociation fragmentation: focus on triglyceride detection and characterization. Anal Chem 83, 6648–6657 (2011)

    Article  CAS  Google Scholar 

  61. Gerbig, S., Takáts, Z.: Analysis of triglycerides in food items by desorption electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 24, 2186–2192 (2010)

    Article  CAS  Google Scholar 

  62. Groenewold, G.S., Gaumet, J.-J.: Characterization of Ce3+-tributyl phosphate coordination complexes produced by fused droplet electrospray ionization with a target capillary. J Mass Spectrom 46, 1274–1281 (2011)

    Article  CAS  Google Scholar 

  63. Ham, B.M., Cole, R.B.: Determination of apparent decomposition threshold energies of lithium adducts of acylglycerols using tandem mass spectrometry and a novel derived effective reaction path length approach. J Mass Spectrom 43, 1482–1493 (2008)

    Article  CAS  Google Scholar 

  64. Chai, Y., Jiang, K., Pan, Y.: Hydride transfer reactions via ion–neutral complex: fragmentation of protonated N-benzylpiperidines and protonated N-benzylpiperazines in mass spectrometry. J Mass Spectrom 45, 496–503 (2010)

    Article  CAS  Google Scholar 

  65. Tu, Y.-P., Holmes, J.L.: Fragmentation of substituted oxonium ions: the role of ion-neutral complexes. J Am Soc Mass Spectrom 10, 386–392 (1999)

    Article  CAS  Google Scholar 

  66. Hudson, C.E., McAdoo, D.J.: Characterization by theory of H-transfers and onium reactions of CH3CH2CH2N+H = CH2. J Am Soc Mass Spectrom 18, 270–278 (2007)

    Article  CAS  Google Scholar 

  67. Bouchoux, G.: From the mobile proton to wandering hydride ion: mechanistic aspects of gas-phase ion chemistry. J Mass Spectrom 48, 505–518 (2013)

    Article  CAS  Google Scholar 

  68. Chai, J.-D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10, 6615–6620 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Felix Kannemann provided invaluable advice on the computations. The authors thank Karen MacDougall, Sue Penny, and Robert L. White for assistance and gratefully acknowledge access to computational facilities at the ACEnet Regional High Performance Computing Consortium for universities in Atlantic Canada, funded by the Canada Foundation for Innovation, the Atlantic Canada Opportunities Agency, and the provinces of Newfoundland and Labrador, Nova Scotia and New Brunswick.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Stuart Grossert.

Electronic supplementary material

Two files of Supplementary Information are provided. File JSG_LR_LCH_JEM_supp1 contains the additional figures mentioned in this paper, plus selected xyz coordinates for the structures described in this file. File JSG_LR_LCH_JEM_supp2 contains selected xyz coordinates for structures in this paper.

ESM 1

(PDF 1.10 MB)

ESM 2

(PDF 1814 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grossert, J.S., Herrera, L.C., Ramaley, L. et al. Studying the Chemistry of Cationized Triacylglycerols Using Electrospray Ionization Mass Spectrometry and Density Functional Theory Computations. J. Am. Soc. Mass Spectrom. 25, 1421–1440 (2014). https://doi.org/10.1007/s13361-014-0917-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0917-9

Key words

Navigation