Skip to main content
Log in

Fragmentation and Isomerization Due to Field Heating in Traveling Wave Ion Mobility Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

During their travel inside a traveling wave ion mobility cell (TW IMS), ions are susceptible to heating because of the presence of high intensity electric fields. Here, we report effective temperatures T eff,vib obtained at the injection and inside the mobility cell of a SYNAPT G2 HDMS spectrometer for different probe ions: benzylpyridinium ions and leucine enkephalin. Using standard parameter sets, we obtained a temperature of ~800 K at injection and 728 ± 2 K into the IMS cell for p-methoxybenzylpyridinium. We found that T eff,vib inside the cell was dependent on the separation parameters and on the nature of the analyte. While the mean energy of the Boltzmann distributions increases with ion size, the corresponding temperature decreases because of increasing numbers of vibrational normal modes. We also investigated conformational rearrangements of 7+ ions of cytochrome c and reveal isomerization of the most compact structure, therefore highlighting the effects of weak heating on the gas-phase structure of biologically relevant ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Shvartsburg, A.A.: Differential Ion Mobility Spectrometry: Nonlinear Ion Transport and Fundamentals of FAIMS, pp. 1–54. CRC Press Inc, Florida (2008)

    Book  Google Scholar 

  2. Mason, E.A., McDaniel, E.W.: Transport Properties of Ions in Gases, pp. 1–29. Wiley, New York (1988)

    Book  Google Scholar 

  3. Song, J., Grun, C.H., Heeren, R.M., Janssen, H.G., van den Brink, O.F.: High-resolution ion mobility spectrometry-mass spectrometry on poly(methyl methacrylate). Angew. Chem. Int. Ed. Engl. 49(52), 10168–10171 (2010)

    Article  CAS  Google Scholar 

  4. Hilton, G.R., Jackson, A.T., Thalassinos, K., Scrivens, J.H.: Structural analysis of synthetic polymer mixtures using ion mobility and tandem mass spectrometry. Anal. Chem. 80(9720–9725), 639 (2008)

    Google Scholar 

  5. Ruotolo, B.T., Benesch, J.L., Sandercock, A.M., Hyung, S.J., Robinson, C.V.: Ion mobility-mass spectrometry analysis of large protein complexes. Nat. Protoc. 3(7), 1139–1152 (2008)

    Article  CAS  Google Scholar 

  6. Henderson, S.C., Valentine, S.J., Counterman, A.E., Clemmer, D.E.: ESI/Ion trap/ion mobility/time-of-flight mass spectrometry for rapid and sensitive analysis of biomolecular mixtures. Anal. Chem. 71(2), 291–301 (1999)

    Article  CAS  Google Scholar 

  7. Karpas, Z., Eiceman, G.A., Krylov, E.V., Krylova, N.: Models on ion heating and mobility in linear field drift tubes and in differential mobility spectrometers. Int. J. Ion Mobil. Spectrom. 7(1), 42–52 (2004)

    Google Scholar 

  8. Giles, K., Pringle, S.D., Worthington, K.R., Little, D., Wildgoose, J.L., Bateman, R.H.: Applications of a traveling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun. Mass Spectrom. 18(20), 2401–2414 (2004)

    Article  CAS  Google Scholar 

  9. Shvartsburg, A.A., Smith, R.D.: Fundamentals of traveling wave ion mobility spectrometry. Anal. Chem. 80(24), 9689–9699 (2008)

    Article  CAS  Google Scholar 

  10. Guevremont, R.: High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. J. Chromatogr. A 1058(1/2), 3–19 (2004)

    Article  CAS  Google Scholar 

  11. May, J.C., McLean, J.A.: The influence of drift gas composition on the separation mechanism in traveling wave ion mobility spectrometry: insight from electrodynamic simulations. Int. J. Ion Mobil. Spectrom. 16(2), 85–94 (2013). 659

    Article  CAS  Google Scholar 

  12. Bush, M.F., Campuzano, I.D.G., Robinson, C.V.: Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies. Anal. Chem. 84(16), 7124–7130 (2012)

    Article  CAS  Google Scholar 

  13. McLuckey, S.A.: Principles of collisional activation in analytical mass spectrometry. J. Am. Soc. Mass Spectrom. 3, 599–614 (1992)

    Article  CAS  Google Scholar 

  14. Merenbloom, S.I., Flick, T.G., Williams, E.R.: How hot are your ions in TWAVE ion mobility spectrometry? J. Am. Soc. Mass Spectrom. 23(3), 553–562 (2012)

    Article  CAS  Google Scholar 

  15. Michaelevski, I., Kirshenbaum, N., Sharon, M.: T-wave ion mobility mass spectrometry: basic experimental procedures for protein complex analysis. Anal. Chem. 82(22), 9484–9491 (2010)

    Article  CAS  Google Scholar 

  16. Morsa, D., Gabelica, V., De Pauw, E.: Effective temperature of ions in traveling wave ion mobility spectrometry. Anal. Chem. 83(14), 5775–5782 (2011)

    Article  CAS  Google Scholar 

  17. Collette, C., De Pauw, E.: Calibration of the internal energy distribution of ions produced by electrospray. Rapid Commun. Mass Spectrom. 12, 165–170 (1998)

    Article  CAS  Google Scholar 

  18. Collette, C., Drahos, L., De Pauw, E., Vekey, K.: Comparison of the internal energy distributions of ions produced by different electrospray sources. Rapid Commun. Mass Spectrom. 12, 1673–1678 (1998)

    Article  CAS  Google Scholar 

  19. Gabelica, V., De Pauw, E.: Internal energy and fragmentation of ions produced in electrospray sources. Mass Spectrom. Rev. 24(4), 566–587 (2005)

    Article  CAS  Google Scholar 

  20. Schnier, P.D., Price, W.D., Strittmatter, E.F., Williams, E.R.: Dissociation energetics and mechanisms of leucine enkephalin (M+H)+ and (2M+X)+Ions (X=H, Li, Na, K, and Rb) measured by blackbody infrared radiative dissociation. J. Am. Soc. Mass Spectrom. 8, 771–780 (1997)

    Article  CAS  Google Scholar 

  21. Valentine, S.J., Counterman, A.E., Clemmer, D.E.: Conformer-dependent proton-transfer reactions of ubiquitin ions. J. Am. Soc. Mass Spectrom. 8, 954–961 (1997)

    Article  CAS  Google Scholar 

  22. Counterman, A.E., Valentine, S.J., Srebalus, C.A., Henderson, S.C., Hoaglund, C.S., Clemmer, D.E.: High-order structure and dissociation of gaseous peptide aggregates that are hidden in mass spectra. J. Am. Soc. Mass Spectrom. 9, 743–759 (1998)

    Article  CAS  Google Scholar 

  23. Clemmer Cross Section Database, h.w.i.e.c. Available at: http://www.indiana.edu/~clemmer. Accessed July 2013.

  24. Shelimov, K.B., Clemmer, D.E., Hudgins, R.R., Jarrold, M.F.: Protein structure in vacuo: gas-phase conformations of BPTI and cytochrome c. J. Am. Chem. Soc. 119, 2240–2248 (1997)

    Article  CAS  Google Scholar 

  25. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1. Gaussian Inc, Wallingford (2009)

    Google Scholar 

  26. Andersson, M.P., Uvdal, P.: New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-basis set 6–311+G(d, p). J. Phys. Chem. A 109, 2937–2941 (2005)

    Article  CAS  Google Scholar 

  27. Shvartsburg, A.A., Mashkevich, S.V., Baker, E.S., Smith, R.D.: Optimization of algorithms for ion mobility calculations. J. Phys. Chem. A 111(10), 2002–2010 (2007)

    Article  CAS  Google Scholar 

  28. Breuker, K.: Principles of mass spectrometry applied to biomolecules, pp. 177–212. Wiley, New-York (2006)

    Book  Google Scholar 

  29. Chen, Y.-L., Collings, B.A., Douglas, D.J.: Collision cross sections of myoglobin and cytochrome c ions with Ne, Ar, and Kr. J. Am. Soc. Mass Spectrom. 8, 681–687 (1997)

    Article  CAS  Google Scholar 

  30. Clemmer, D.E., Hudgins, R.R., Jarrold, M.F.: Naked protein conformations: cytochrome c in the gas phase. J. Am. Chem. Soc. 117(40), 10141–10142 (1995)

    Article  CAS  Google Scholar 

  31. Mao, Y., Woenckhaus, J., Kolafa, J., Ratner, M.A., Jarrold, M.F.: Thermal unfolding of unsolvated cytochrome c: experiment and molecular dynamics simulations. J. Am. Chem. Soc. 121, 2712–2721 (1999)

    Article  CAS  Google Scholar 

  32. Balthasart, F., Plavec, J., Gabelica, V.: Ammonium ion binding to DNA G-quadruplexes: do electrospray mass spectra faithfully reflect the solution-phase species? J. Am. Soc. Mass Spectrom. 24(1), 1–8 (2013)

    Article  CAS  Google Scholar 

  33. López, A., Tarragó, T., Vilaseca, M., Giralt, E.: Applications and future of ion mobility mass spectrometry in structural biology. New J. Chem. 37(5), 1283–1289 (2013)

  34. Saikusa, K., Fuchigami, S., Takahashi, K., Asano, Y., Nagadoi, A., Tachiwana, H., Kurumizaka, H., Ikeguchi, M., Nishimura, Y., Akashi, S.: Gas-phase structure of the histone multimers characterized by ion mobility mass spectrometry and molecular dynamics simulation. Anal. Chem. 85(8), 4165–4171 (2013). 737

    Article  CAS  Google Scholar 

  35. Cramer, C.J.: Essentials of Computational Chemistry, pp. 233–271. Wiley, New-York (2004)

    Google Scholar 

  36. Hünenberger, P.H.: Thermostat algorithms for molecular dynamics simulations. Adv. Polym. Sci. 173, 105–149 (2005)

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank the FRS-FNRS for financial support. Professor Bernard Leyh (University of Liege) is acknowledged for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin De Pauw.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 303 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morsa, D., Gabelica, V. & De Pauw, E. Fragmentation and Isomerization Due to Field Heating in Traveling Wave Ion Mobility Spectrometry. J. Am. Soc. Mass Spectrom. 25, 1384–1393 (2014). https://doi.org/10.1007/s13361-014-0909-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0909-9

Keywords

Navigation