Skip to main content
Log in

On-Line Desalting of Crude Oil in the Source Region of a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

  • Application Note
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The presence of dissolved metal ions in waters associated with crude oils has many negative implications for the transport, processing, and refining of petroleum. In addition, mass spectrometric analysis of sodium containing crude oil samples suffers from ionization suppression, unwanted adduct formation, and an increase in the complexity of data analysis. Here, we describe a method for the reduction/elimination of these adverse effects by modification of the source region gas-inlet system of a 12 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Several acids were examined as part of this study, with the most suitable for on-line desalting found to have both high vapor pressure and low pKa; 12.1 M HCl showed the strongest desalting effect for crude oil samples with a sodium removal index (SRI) of 88%–100% ± 7% for the NaOS compound class. In comparison, a SRI of only 38% ± 9% was observed for a H2O/toluene solution-phase extraction of Oil 1. These results clearly demonstrate the increased efficacy of pseudo-vapor phase desalting with the additional advantages that initial sample solution conditions are preserved and no sample preparation is required prior to analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

References

  1. Head, I.M., Jones, D.M., Larter, S.R.: Biological activity in deep subsurface and the origin of heavy oil. Nature 426, 344–352 (2003)

    Article  CAS  Google Scholar 

  2. Bai, Z.-S., Wang, H.-L.: Crude oil desalting using hydrocyclones. Chem. Eng. Res. Des. 85, 1586–1590 (2007)

    Article  CAS  Google Scholar 

  3. Xu, X., Yang, J., Jiang, Y., Gao, J.: Effects of process conditions on desalting and demetalization of crude oil. Pet. Sci. Technol. 24, 1307–1321 (2006)

    Article  Google Scholar 

  4. Kebarle, P., Peschke, M.: On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. Anal. Chim. Acta. 406, 11–35 (2000)

    Article  CAS  Google Scholar 

  5. Gaskell, S.J.: Electrospray: principles and practice. J. Mass Spectrom. 32, 677–688 (1997)

    Article  CAS  Google Scholar 

  6. Iavarone, A.T., Udekwu, O.A., Williams, E.R.: Buffer loading for counteracting metal salt-induced signal suppression in electrospray ionization. Anal. Chem. 76, 3944–3950 (2004)

    Article  CAS  Google Scholar 

  7. Yang, B., Chen, Y., Mori, M., Ohira, S.-I., Azad, A., Dasgupta, P.: Charge detector for the measurement of ionic solutes. Anal. Chem. 82, 951–958 (2010)

    Article  CAS  Google Scholar 

  8. Alvarez, M., Tremintin, G., Wang, J., Eng, M., Kao, Y.-H., Jeong, J., Ling, V., Borisov, O.: On-line characterization of monoclonal antibody variants by liquid chromatography mass spectrometry operating in a two-dimension format. Anal. Biochem. 419, 17–25 (2011)

    Article  CAS  Google Scholar 

  9. Awbrey, S.S., Gropp R.W.: U.S. Patent: 5,080,779: Methods for Removing Iron from Crude Oil in a Two-stage Desalting System. January 14, (1992)

  10. Norouzbahari, S., Roostaazad, R., Hesampour, M.: Crude oil desalter effluent treatment by a hybrid UF/RO membrane separation process. Desalination 238, 174–182 (2009)

    Article  CAS  Google Scholar 

  11. Xu, N., Lin, Y., Hostadler, S.A., Matson, D., Call, C.J., Smith, R.D.: A microfabricated dialysis device for sample cleanup in electrospray ionization mass spectrometry. Anal. Chem. 70, 3553–3556 (1998)

    Article  CAS  Google Scholar 

  12. Liu, G., Xu, X., Gao, J.: Study on the compatibility of asphaltic crude oil with the electric desalting demulsifiers. Energy Fuels 17, 543–548 (2003)

    Article  CAS  Google Scholar 

  13. Mapolelo, M.M., Stanford, L.A., Rodgers, R.P., Yen, A.T., Debord, J.D., Asomaning, S., Marshall, A.G.: Chemical speciation of calcium and sodium naphthenate deposits by electrospray ionization ft-icr mass spectrometry. Energy Fuels 23, 349–355 (2009)

    Article  CAS  Google Scholar 

  14. Kharlamova, A., DeMuth, J.C., McLuckey, S.A.: Vapor treatment of electrospray droplets: evidence for the folding of initially denatured proteins on the sub-millisecond time-scale. J. Am. Soc. Mass Spectrom. 23, 88–101 (2012)

    Article  CAS  Google Scholar 

  15. Kharlamova, A., Prentice, B.M., Huang, T.-Y., McLuckey, S.A.: Electrospray droplet exposure to gaseous acids for reduction of metal counter-ions in nucleic acid ions. Int. J. Mass Spectrom. 300, 158–166 (2011)

    Article  CAS  Google Scholar 

  16. MSDS No. A0326: Acetic Acid. Sciencelab.com Inc., Houston, TX, USA. Nov. 1 (2010)

  17. MSDS No. Not Available: Formic Acid. Sciencelab.com Inc., Houston, TX, Nov. 1 (2010)

  18. MSDS No. H3880: Hydrochloric Acid. Sciencelab.com Inc., Houston, TX, Nov. 1 (2010)

  19. Cerna, M., Harvey, A.F.: Application Note 041: The fundamentals of FFT-based Signal Analysis and Measurement. National Instruments Corporation, Austin (2000)

    Google Scholar 

  20. Marshall, A.G., Rogers, R.P.: Petroleomics: chemistry of the underworld. Proc. Natl. Acad. Sci. U. S. A. 105, 18090–18095 (2008)

    Article  CAS  Google Scholar 

  21. Kim, S., Rogers, R.P., Marshall, A.G.: Truly “exact” mass: elemental composition can be determined uniquely from molecular mass measurement at ~0.1 mDa accuracy for molecule up to ~500 Da. Int. J. Mass Spectrom. 251, 260–265 (2006)

    Article  CAS  Google Scholar 

  22. Kharlamova, A., Prentice, B.M., Huang, T.-Y., McLuckey, S.A.: Electrospray droplet exposure to gaseous acids for the manipulation of protein charge state distribution. Anal. Chem. 82, 7422–7429 (2010)

    Article  CAS  Google Scholar 

  23. Kharlamova, A., McLuckey, S.A.: Negative elctrospray droplet exposure to gaseous bases for the manipulation of protein charge state distribution. Anal. Chem. 83, 431–439 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowsledge support for this work by an NSERC Discovery Award, Canada Research Chairs, Canada Foundation for Innovation, PRG research funds, the PRG FTMS Consortium (Ecopetrol, Petrobras, and Shell) and the University of Calgary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ken Chanthamontri.

Additional information

C. Ken Chanthamontri and Andrew P. Stopford contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanthamontri, C.K., Stopford, A.P., Snowdon, R.W. et al. On-Line Desalting of Crude Oil in the Source Region of a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. J. Am. Soc. Mass Spectrom. 25, 1506–1510 (2014). https://doi.org/10.1007/s13361-014-0906-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0906-z

Key words

Navigation