Skip to main content
Log in

High-Energy Collision-Induced Dissociation by MALDI TOF/TOF Causes Charge-Remote Fragmentation of Steroid Sulfates

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids, including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Falkenstein, E., Tillmann, H.C., Christ, M., Feuring, M., Wehling, M.: Multiple actions of steroid hormones—a focus on rapid, nongenomic effects. Pharmacol. Rev. 52, 513–556 (2000)

    CAS  Google Scholar 

  2. Schachter, B., Marrian, G.F.: The isolation of estrone sulfate from the urine of pregnant mares. J. Biol. Chem. 126, 663–669 (1938)

    CAS  Google Scholar 

  3. Wang, D.Y., Bulbrook, R.D.: Steroid sulphates. Adv. Reprod. Physiol. 3, 113–146 (1968)

    CAS  Google Scholar 

  4. Strott, C.A.: Sulfonation and molecular action. Endocr.Rev. 23, 703–732 (2002)

    Article  CAS  Google Scholar 

  5. Noordam, C., Dhir, V., McNelis, J.C., Schlereth, F., Hanley, N.A., Krone, N., Smeitink, J.A., Smeets, R., Sweep, F.C., Claahsen-van der Grinten, H.L., Arlt, W.: Inactivating papss2 mutations in a patient with premature pubarche. New Engl. J. Med. 360, 2310–2318 (2009)

    Article  CAS  Google Scholar 

  6. Gibbs, T.T., Russek, S.J., Farb, D.H.: Sulfated steroids as endogenous neuromodulators. Pharmacol. Biochem. Behav. 84, 555–567 (2006)

    Article  CAS  Google Scholar 

  7. Strott, C.A., Higashi, Y.: Cholesterol sulfate in human physiology: what’s it all about? J. Lipid Res. 44, 1268–1278 (2003)

    Article  CAS  Google Scholar 

  8. Hill, M., Parizek, A., Kancheva, R., Jirasek, J.E.: Reduced progesterone metabolites in human late pregnancy. Physiol. Res./Acad. Sci. Bohem. 60, 225–241 (2011)

    CAS  Google Scholar 

  9. Nodari, F., Hsu, F.F., Fu, X.Y., Holekamp, T.F., Kao, L.F., Turk, J., Holy, T.E.: Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. J. Neurosci. 28, 6407–6418 (2008)

    Article  CAS  Google Scholar 

  10. Hsu, F.F., Nodari, F., Kao, L.F., Fu, X.Y., Holekamp, T.F., Turk, J., Holy, T.E.: Structural characterization of sulfated steroids that activate mouse pheromone-sensing neurons. Biochemistry-US 47, 14009–14019 (2008)

    Article  CAS  Google Scholar 

  11. Ryhage, R., Stenhagen, E.: Mass spectrometry in lipid research. J. Lipid Res. 1, 361–390 (1960)

    CAS  Google Scholar 

  12. Budzikiewicz, H., Djerassi, C., Williams, D.H.: Structure elucidation of natural products by mass spectrometry. Vol. II. Steroids, Terpenoids, Sugars, and Miscellaneous Classes. Holden-Day Series in Physical Techniques in Chemistry. Verlag Holden-Day Inc., San Francisco-London-Amsterdam (1964)

  13. Sjovall, J.: Fifty years with bile acids and steroids in health and disease. Lipids 39, 703–722 (2004)

    Google Scholar 

  14. Wudy, S.A., Hartmann, M., Homoki, J.: Determination of 11-deoxycortisol (reichstein’s compound s) in human plasma by clinical isotope dilution mass spectrometry using benchtop gas chromatography-mass selective detection. Steroids 67, 851–857 (2002)

    Article  CAS  Google Scholar 

  15. Reddy, S., Iden, C.R., Brownawell, B.J.: Analysis of steroid conjugates in sewage influent and effluent by liquid chromatography-tandem mass spectrometry. Anal. Chem. 77, 7032–7038 (2005)

    Article  CAS  Google Scholar 

  16. Bean, K.A., Henion, J.D.: Direct determination of anabolic steroid conjugates in human urine by combined high-performance liquid chromatography and tandem mass spectrometry. J. Chromatogr. B 690, 65–75 (1997)

    Article  CAS  Google Scholar 

  17. Bowers, L.D.: Sanaullah: direct measurement of steroid sulfate and glucuronide conjugates with high-performance liquid chromatography-mass spectrometry. J. Chromatogr. B 687, 61–68 (1996)

    Article  CAS  Google Scholar 

  18. Barber, M., Bordoli, R.S., Sedgwick, R.D., Tyler, A.N.: Fast atom bombardment of solids (FAB)—a new ion-source for mass-spectrometry. J. Chem. Soc. Chem. Commun. 7, 325–327 (1981)

    Article  Google Scholar 

  19. Cooks, R.G., Glish, G.L.: Mass-spectrometry mass-spectrometry. Chem. Eng. News 59, 40–52 (1981)

    Article  CAS  Google Scholar 

  20. Levsen, K., Schwarz, H.: Gas-phase chemistry of collisionally activated ions. Mass Spectrom. Rev. 2, 77–148 (1983)

    Article  CAS  Google Scholar 

  21. Gross, M.L., Chess, E.K., Lyon, P.A., Crow, F.W., Evans, S., Tudge, H.: Triple analyzer mass-spectrometry for high-resolution ms/ms studies. Int. J. Mass Spectrom. 42, 243–254 (1982)

    CAS  Google Scholar 

  22. Tomer, K.B., Crow, F.W., Gross, M.L.: Location of double-bond position in unsaturated fatty-acids by negative-ion MS/MS. J. Am. Chem. Soc. 105, 5487–5488 (1983)

    Article  CAS  Google Scholar 

  23. Tomer, K.B., Jensen, N.J., Gross, M.L., Whitney, J.: Fast atom bombardment combined with tandem mass spectrometry for determination of bile salts and their conjugates. Biomed. Environ. Mass Spectrom. 13, 265–272 (1986)

    Article  CAS  Google Scholar 

  24. Cheng, M.T., Barbalas, M.P., Pegues, R.F., Mclafferty, F.W.: Tandem mass-spectrometry—structural and stereochemical information from steroids. J. Am. Chem. Soc. 105, 1510–1513 (1983)

    Article  CAS  Google Scholar 

  25. Kingston, E.E., Beynon, J.H., Newton, R.P., Liehr, J.G.: The differentiation of isomeric biological compounds using collision-induced dissociation of ions generated by fast atom bombardment. Biomed. Mass Spectrom. 12, 525–534 (1985)

    Article  CAS  Google Scholar 

  26. Tomer, K.B., Gross, M.L.: Fast atom bombardment and tandem mass spectrometry for structure determination: remote site fragmentation of steroid conjugates and bile salts. Biomed. Environ. Mass Spectrom. 15, 89–98 (1988)

    Article  CAS  Google Scholar 

  27. Strahm, E., Saudan, C., Sottas, P.E., Mangin, P., Saugy, M.: Direct detection and quantification of 19-norandrosterone sulfate in human urine by liquid chromatography-linear ion trap mass spectrometry. J. Chromatogr. B 852, 491–496 (2007)

    Article  CAS  Google Scholar 

  28. Werner, E., Heilier, J.F., Ducruix, C., Ezan, E., Junot, C., Tabet, J.C.: Mass spectrometry for the identification of the discriminating signals from metabolomics: current status and future trends. J. Chromatogr. B 871, 143–163 (2008)

    Article  CAS  Google Scholar 

  29. Cotter, R.J.: High energy collisions on tandem time-of-flight mass spectrometers. J. Am. Soc. Mass Spectrom. 24, 657–674 (2013)

    Article  CAS  Google Scholar 

  30. Cornish, T.J., Cotter, R.J.: A curved-field reflectron for improved energy focusing of product ions in time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 7, 1037–1040 (1993)

    Article  CAS  Google Scholar 

  31. Trimpin, S., Clemmer, D.E., McEwen, C.N.: Charge-remote fragmentation of lithiated fatty acids on a tof-tof instrument using matrix-ionization. J. Am. Soc. Mass Spectrom. 8, 1967–1972 (2007)

    Article  Google Scholar 

  32. Sun, G., Yang, K., Zhao, Z., Guan, S., Han, X., Gross, R.W.: Shotgun metabolomics approach for the analysis of negatively charged water-soluble cellular metabolites from mouse heart tissue. Anal. Chem. 79, 6629–6640 (2007)

    Article  CAS  Google Scholar 

  33. Pittenauer, E., Allmaier, G.: The renaissance of high-energy cid for structural elucidation of complex lipids: MALDI-TOF/RTOF-MS of alkali cationized triacylglycerols. J. Am. Soc. Mass Spectrom. 20, 1037–1047 (2009)

    Article  CAS  Google Scholar 

  34. Pittenauer, E., Allmaier, G.: High-energy collision induced dissociation of biomolecules: MALDI-TOF/RTOF mass spectrometry in comparison to tandem sector mass spectrometry. Combinat. Chem. High Throughput Screen. 12, 137–155 (2009)

    Article  CAS  Google Scholar 

  35. Narouz, M.R., Soliman, S.E., Fridgen, T.D., Nashed, M.A., Banoub, J.H.: High-energy collision-induced dissociation tandem mass spectrometry of regioisomeric lactose palmitic acid monoesters using matrix-assisted laser desorption/ionization. Rapid Commun. Mass Spectrom. 28, 169–177 (2014)

    Article  CAS  Google Scholar 

  36. Baum, F., Fedorova, M., Ebner, J., Hoffmann, R., Pischetsrieder, M.: Analysis of the endogenous peptide profile of milk: identification of 248 mainly casein-derived peptides. J. Proteome Res. 12, 5447–5462 (2013)

    Article  CAS  Google Scholar 

  37. Hailat, I., Helleur, R.J.: Direct analysis of sterols by derivatization matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and tandem mass spectrometry. Rapid Commun. Mass Spectrom. 28, 149–158 (2014)

    Article  CAS  Google Scholar 

  38. Yan, Y., Rempel, D.L., Holy, T.E., Gross, M.L.: Mass spectrometry combinations for structural characterization of sulfated-steroid metabolites. J. Am. Soc. Mass Spectrom. 25, 869–879 (2014)

  39. Satoh, T., Tsuno, H., Iwanaga, M., Kammei, Y.: The design and characteristic features of a new time-of-flight mass spectrometer with a spiral ion trajectory. J. Am. Soc. Mass Spectrom. 16, 1969–1975 (2005)

    Article  CAS  Google Scholar 

  40. Satoh, T., Tsuno, H., Iwanaga, M., Kammei, Y.: A new spiral time-of-flight mass spectrometer for high mass analysis. J. Mass Spectrom. Jpn. 541, 11–17 (2006)

    Article  Google Scholar 

  41. Satoh, T., Sato, T., Tamura, J.: Development of a high-performance maldi-tof mass spectrometer utilizing a spiral ion trajectory. J. Am. Soc. Mass Spectrom. 18, 1318–1323 (2007)

    Article  CAS  Google Scholar 

  42. Satoh, T., Sato, T., Kubo, A., Tamura, J.: Tandem time-of-flight mass spectrometer with high precursor ion selectivity employing spiral ion trajectory and improved offset parabolic reflectron. J. Am. Soc. Mass Spectrom. 22, 797–803 (2011)

    Article  CAS  Google Scholar 

  43. Kubo, A., Satoh, T., Itoh, Y., Hashimoto, M., Tamura, J., Cody, R.: Structural analysis of triacylglycerols by using a MALDI-TOF/TOF system with monoisotopic precursor selection. J. Am. Soc. Mass Spectrom. 24, 684–689 (2013)

    Article  CAS  Google Scholar 

  44. Strott, C.A.: Steroid sulfotransferases. Endocr. Rev. 17, 670–697 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support for this research by the National Institute of General Medical Sciences (8 P41 GM103422-35 to M.L.G.) and the National Institute on Deafness and Other Communication Disorders (R01 DC005964 to T.E.H.), both of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Gross.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Ubukata, M., Cody, R.B. et al. High-Energy Collision-Induced Dissociation by MALDI TOF/TOF Causes Charge-Remote Fragmentation of Steroid Sulfates. J. Am. Soc. Mass Spectrom. 25, 1404–1411 (2014). https://doi.org/10.1007/s13361-014-0901-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0901-4

Keywords

Navigation