Skip to main content
Log in

Reactions of Hydroxyalkyl Radicals with Cysteinyl Peptides in a NanoESI Plume

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

In biological systems, carbon-centered small molecule radicals are primarily formed via external radiation or internal radical reactions. These radical species can react with a variety of biomolecules, most notably nucleic acids, the consequence of which has possible links to gene mutation and cancer. Sulfur-containing peptides and proteins are reactive toward a variety of radical species and many of them behave as radical scavengers. In this study, the reactions between alkyl alcohol carbon-centered radicals (e.g., •CH2OH for methanol) and cysteinyl peptides within a nanoelectrospray ionization (nanoESI) plume were explored. The reaction system involved ultraviolet (UV) irradiation of a nanoESI plume using a low pressure mercury lamp consisting of 185 and 254 nm emission bands. The alkyl alcohol was added as solvent into the nanoESI solution and served as the precursor of hydroxyalkyl radicals upon UV irradiation. The hydroxyalkyl radicals subsequently reacted with cysteinyl peptides either containing a disulfide linkage or free thiol, which led to the formation of peptide-S-hydroxyalkyl product. This radical reaction coupled with subsequent MS/MS was shown to have analytical potential by cleaving intrachain disulfide linked peptides prior to CID to enhance sequence information. Tandem mass spectrometry via collision-induced dissociation (CID), stable isotope labeling, and accurate mass measurement were employed to verify the identities of the reaction products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Halliwell, B., Gutteridge, J.: Free radicals in biology and medicine, 4th ed. Oxford University Press, Oxford, 614-631 (2007)

  2. Yang, W., Hekimi, S.: A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegens. PLoS Biol. 8, 1–14 (2010)

    Article  Google Scholar 

  3. Lapointe, J., Hekimi, S.: When a theory of aging ages badly. Cell. Mol. Life Sci. 67, 1–8 (2010)

    Article  CAS  Google Scholar 

  4. Hess, W.P., Tully, F.P.: Hydrogen-atom abstraction from methanol by hydroxyl radical. J. Phys. Chem. 93, 1944–1947 (1989)

    Article  CAS  Google Scholar 

  5. Asmus, K.D., Moeckel, H., Henglein, A.: Pulse radiolytic study of the site of hydroxyl radical attack on aliphatic alcohols in aqueous solution. J. Phys. Chem. 77, 1218–1221 (1973)

    Article  CAS  Google Scholar 

  6. Meana-Paneda, R., Truhlar, D.G., Fernandez-Ramos, A.: High-level direct-dynamics variational transition state theory calculations including multidimensional tunneling of the thermal rate constants, branching ratios, and kinetic isotope effects of the hydrogen abstraction reactions from methanol by atomic hydrogen. J. Chem. Phys. 134, 094302–094314 (2011)

    Article  Google Scholar 

  7. Augusto, O.: Alkylation and cleavage of DNA by carbon-centered radical metabolites. Free Radic. Biol. Med. 15, 329–336 (1993)

    Article  CAS  Google Scholar 

  8. Burrows, C.J., Muller, J.G.: Oxidative nucleobase modifications leading to strand scission. Chem. Rev. 98, 1109–1152 (1998)

    Article  CAS  Google Scholar 

  9. Shetlar, M.D.: Photochemical and free radical initiated reactions of 1,3-dimethylthymine with isopropanol. Photochem. Photobiol. 29, 253–259 (1979)

    Article  CAS  Google Scholar 

  10. Chatgilialoglu, C., Caminal, C., Mulazzani, Q.G.: Radical-based alkylation of guanine derivatives in aqueous medium. Org. Biomol. Chem. 9, 3494–3498 (2011)

  11. Reid, D.L., Shustov, G.V., Armstrong, D.A., Rauk, A., Schuchmann, M.N., Akhlaq, M.S., von Sonntag, C.: H-atom abstraction from thiols by C-centered radicals. A theoretical and experimental study of reaction rates. Phys. Chem. Chem. Phys. 4, 2965–2974 (2002)

    Article  CAS  Google Scholar 

  12. Nemukhin, A.V., Grigorenko, B.L., Topol, I.A., Burt, S.K.: QM/MM modeling of the glutathione-hydroxymethyl radical reaction in water. Phys. Chem. Chem. Phys. 6, 1031–1038 (2004)

    Article  CAS  Google Scholar 

  13. Hoyseth, K.S., Jones, P.J.H.: Ethanol induced teratogenesis: characterization, mechanisms, and diagnositic approaches. Life Sci. 44, 643–649 (1989)

    Article  CAS  Google Scholar 

  14. Kotch, L.E., Chen, S.-Y., Sulik, K.K.: Ethanol-induced teratogenesis: free radical damage as a possible mechanism. Tetrahedron 52, 128–136 (1995)

    CAS  Google Scholar 

  15. Albano, E., French, S.W., Ingelman-Sundberg, M.: Hydroxyethyl radicals in ethanol hepatotoxicity. Front. Biosci. 4, 533–540 (1999)

    Article  Google Scholar 

  16. Tyndall, G.S., Wallington, T.J., Hurley, M.D., Schneider, W.F.: Rate coefficient for the reaction of hydroxymethyl radicals with chlorine and infrared spectra of chloromethanol and dichloromethanol. J. Phys. Chem. 97, 1576–1582 (1993)

    Article  CAS  Google Scholar 

  17. Atkinson, R., Baulch, D.L., Cox, R.A., Hampson, J.R.F., Kerr, J.A., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement IV. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J. Phys. Chem. Ref. Data 21, 1125–1568 (1992)

    Article  CAS  Google Scholar 

  18. Westbrook, C.K., Dryer, F.L.: Comprehensive mechanism for methanol oxidation. Combust. Sci. Technol. 20, 125–140 (1979)

    Article  CAS  Google Scholar 

  19. Tureček, F., Julian, R.R.: Peptide radicals and cation radicals in the gas phase. Chem. Rev. 113, 6691–6733 (2013)

    Article  Google Scholar 

  20. Thomas, M.C., Mitchell, T.W., Blanksby, J.B.: Ozonolysis of phospholipid double bonds during electrospray ionization: a new tool for structure determination. J. Am. Chem. Soc. 128, 58–59 (2006)

    Article  CAS  Google Scholar 

  21. Ma, X., Xia, Y.: Pinpointing double bonds in lipids by Paternò-Büchi reactions and mass spectrometry. Angew. Chem. 126, 2630–2634 (2014)

    Article  Google Scholar 

  22. Hambly, D.M., Gross, M.L.: Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J. Am. Soc. Mass Spectrom. 16, 2057–2063 (2005)

  23. Wang, L., Chance, M.R.: Structural mass spectrometry of proteins using hydroxyl radical based protein footprinting. Anal. Chem. 83, 7234–7241 (2011)

    Article  CAS  Google Scholar 

  24. Maleknia, S.D., Downard, K.M.: Radical approaches to probe protein structure, folding, and interactions by mass spectrometry. Mass Spectrom. Rev. 20, 388–401 (2001)

    Article  CAS  Google Scholar 

  25. Xia, Y., Cooks, R.G.: Plasma induced oxidative cleavage of disulfide bonds in polypeptides during nanoelectrospray ionization. Anal. Chem. 82, 2856–2864 (2010)

    Article  CAS  Google Scholar 

  26. Stinson, C.A., Xia, Y.: Radical induced disulfide bond cleavage within peptides via ultraviolet irradiation of an electrospray plume. Analyst 138, 2840–2846 (2013)

    Article  CAS  Google Scholar 

  27. Ma, X., Love, C., Zhang, X., Xia, Y.: Gas-Phase fragmentation of [M+nH+OH]n+ ions formed from peptides containing intramolecular disulfide bonds. J. Am. Soc. Mass Spectrom. 22, 922–930 (2011)

    Article  CAS  Google Scholar 

  28. Tan, L., Xia, Y.: Gas-phase reactivity of peptide thiyl (RS•), perthiyl (RSS•), and sulfinyl (RSO•) radical ions formed from atmospheric pressure ion/radical reactions. J. Am. Soc. Mass Spectrom. 24, 534–542 (2013)

    Article  CAS  Google Scholar 

  29. Love, C.B., Tan, L., Francisco, J.S., Xia, Y.: Competition of charge- versus radical-directed fragmentation of gas-phase protonated cysteine sulfinyl radicals. J. Am. Chem. Soc. 135, 6226–6233 (2013)

    Article  CAS  Google Scholar 

  30. Tan, L., Hu, H., Francisco, J.S., Xia, Y.: A mass spectrometric approach for probing the stability of bioorganic radicals. Angew. Chem. Int. Ed. 53, 1887–1890 (2014)

    Article  CAS  Google Scholar 

  31. Durand, K.L., Ma, X., Xia, Y.,: Intra-molecular reactions as a new approach to investigate bio-radical reactivity: a case study of cysteine sulfinyl radicals. Analyst. 139, 1327--1330 (2014)

  32. Mason, R.P., Sanders, J.K.M., Crawford, A., Hunter, B.K.: Formaldehyde metabolism by Escherichia coli. Detection by in vivo carbon-13 NMR spectroscopy of S-(hydroxymethyl)glutathione as a transient intracellular intermediate. Biochemistry 25, 4504–4507 (1986)

    Article  CAS  Google Scholar 

  33. Wilm, M., Mann, M.: Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68, 1–8 (1996)

    Article  CAS  Google Scholar 

  34. Hager, J.W.: A new linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 16, 512–526 (2002)

    Article  CAS  Google Scholar 

  35. Collings, B., Stott, W., Londry, F.: Resonant excitation in a low-pressure linear ion trap. J. Am. Soc. Mass Spectrom. 14, 622–634 (2003)

    Article  CAS  Google Scholar 

  36. Biemann, K.: Contributions of mass spectrometry to peptide and protein structure. Biol. Mass Spectrom. 16, 99–111 (1988)

    Article  CAS  Google Scholar 

  37. Roepstorff, P., Fohlman, J.: Letter to the editors. Biol. Mass Spectrom. 11, 601–601 (1984)

    Article  CAS  Google Scholar 

  38. Osburn, S., Berden, G., Oomens, J., Gulyuz, K., Polfer, N.C., O'Hair, R.A.J., Ryzhov, V.: Structure and reactivity of the glutathione radical cation: radical rearrangement from the cysteine sulfur to the glutamic acid α-carbon atom. ChemPlusChem 78, 970–978 (2013)

    Article  CAS  Google Scholar 

  39. Koivusalo, M., Baumann, M., Uotila, L.: Evidence for the identity of glutathione-dependent formaldehyde dehydrogenase and class III alcohol dehydrogenase. FEBS Lett. 257, 105–109 (1989)

    Article  CAS  Google Scholar 

  40. Naylor, S.M., Mason, R.P., Sanders, J.K., Williams, D.H., Moneti, G.: Formaldehyde adducts of glutathione. Structure elucidation by two-dimensional NMR spectroscopy and fast-atom-bombardment tandem mass spectrometry. Biochem. J. 249, 573–579 (1988)

    CAS  Google Scholar 

  41. Tan, L., Xia, Y.: Gas-phase peptide sulfinyl radical ions: formation and unimolecular dissociation. J. Am. Soc. Mass Spectrom. 23, 2011–2019 (2012)

    Article  CAS  Google Scholar 

  42. Creasey, D.J., Heard, D.E., Lee, J.D.: Absorption cross-section measurements of water vapour and oxygen at 185 nm. Implications for the calibration of field instruments to measure OH, HO2, and RO2 radicals. Geophys. Res. Lett. 27, 1651–1654 (2000)

    Article  CAS  Google Scholar 

  43. Calvert, J.G., Pitts, J.N.: Photochemistry. John Wiley and Sons, Inc, New York (1966)

    Google Scholar 

  44. Dusanter, S., Vimal, D., Stevens, P.S.: Technical note: measuring tropospheric OH and HO2 by laser-induced fluorescence at low pressure. A comparison of calibration techniques. Atmos. Chem. Phys. 8, 321–340 (2008)

    Article  CAS  Google Scholar 

  45. Akhlaq, M.S., Murthy, C.P., Steenken, S., Von Sonntag, C.: Reaction of alpha hydroxyalkyl radicals and their anions with oxidized dithiothreitol: a pulse radiolysis and product analysis study. J. Phys. Chem. 93, 4331–4334 (1989)

    Article  CAS  Google Scholar 

  46. Buszek, R.J., Sinha, A., Francisco, J.S.: The isomerization of methoxy radical: intramolecular hydrogen atom transfer mediated through acid catalysis. J. Am. Chem. Soc. 133, 2013–2015 (2011)

    Article  CAS  Google Scholar 

  47. Cheng, B.-M., Bahou, M., Chen, W.-C., Yui, C.-H., Lee, Y.-P., Lee, L.C.: Experimental and theoretical studies on vacuum ultraviolet absorption cross sections and photodissociation of CH3OH, CH3OD, CD3OH, and CD3OD. J. Chem. Phys. 117, 1633–1640 (2002)

    Article  CAS  Google Scholar 

  48. Wang, T., Bowie, J.H.: Hydrogen tunnelling influences the isomerisation of some small radicals of interstellar importance. A theoretical investigation. Org. Biomol. Chem. 10, 3219–3228 (2012)

    Article  CAS  Google Scholar 

  49. Saebo, S., Radom, L., Schaefer III, H.F.: The weakly exothermic rearrangement of methoxy radical (CH3O∙) to the hydroxymethyl radical (∙CH2OH). J. Chem. Phys. 78, 845–853 (1983)

    Article  CAS  Google Scholar 

  50. Wardman, P., von Sonntag, C.: Kinetic factors that control the fate of thiyl radicals in cells. Methods Enzymol. 251, 31--45 (1995)

  51. Wine, P.H., Kreutter, N.M., Gump, C.A., Ravishankara, A.R.: Kinetics of hydroxyl radical reactions with the atmospheric sulfur compounds hydrogen sulfide, methanethiol, ethanethiol, and dimethyl disulfide. J. Phys. Chem. 85, 2660–2665 (1981)

    Article  CAS  Google Scholar 

  52. Yin, F., Grosjean, D., Seinfeld, J.: Photo-oxidation of dimethyl sulfide and dimethyl disulfide. I. Mechanism development. J. Atmos. Chem. 11, 309–364 (1990)

    Article  CAS  Google Scholar 

  53. Nip, W.S., Singleton, D.L., Cvetanovic, R.J.: Gas-phase reactions of O(3P) atoms with methanethiol, ethanethiol, methyl sulfide, and dimethyl disulfide. 1. Rate constants and Arrhenius parameters. J. Am. Chem. Soc. 103, 3526–3530 (1981)

    Article  CAS  Google Scholar 

  54. Tang, H.-Y., Speicher, D.W.: Determination of disulfide-bond linkages in proteins. Curr Protoc Protein Sci. 37:11.11.1--11.11.20, (2004)

Download references

Acknowledgments

This research was supported by NSF CHE-1308114. The authors thank Professor Zheng Ouyang for use of the Exactive mass spectrometer for accurate mass measurement. Y.X. recognizes support from ASMS research award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Xia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stinson, C.A., Xia, Y. Reactions of Hydroxyalkyl Radicals with Cysteinyl Peptides in a NanoESI Plume. J. Am. Soc. Mass Spectrom. 25, 1192–1201 (2014). https://doi.org/10.1007/s13361-014-0898-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0898-8

Key words

Navigation