Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

Abstract

Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm employs an analytical approach to identify and remove artifacts from the data, decreasing the likelihood of false identifications in subsequent data processing. Following application of the algorithm, IMS-MS measurement sensitivity is greatly increased and artifacts that previously limited the utility of applying the Hadamard transform to IMS are avoided.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1.

    Braun, K.L., Hapuarachchi, S., Fernandez, F.M., Aspinwall, C.A.: Fast hadamard transform capillary electrophoresis for on-line, time-resolved chemical monitoring. Anal Chem 78, 1628–1635 (2006)

    CAS  Article  Google Scholar 

  2. 2.

    Zare, R.N., Fernandez, F.M., Kimmel, J.R.: Hadamard transform time‐of‐flight mass spectrometry: more signal, more of the time. Angew Chem Int Ed 42, 30–35 (2003)

    CAS  Article  Google Scholar 

  3. 3.

    Fellgett, P.: On the ultimate sensitivity and practical performance of radiation detectors. JOSA 39, 970–976 (1949)

    CAS  Article  Google Scholar 

  4. 4.

    Hanley, Q.S.: Masking, photobleaching, and spreading effects in hadamard transform imaging and spectroscopy systems. Appl Spectrosc 55, 318–330 (2001)

  5. 5.

    Belov, M.E., Buschbach, M.A., Prior, D.C., Tang, K., Smith, R.D.: Multiplexed ion mobility spectrometry-orthogonal time-of-flight mass spectrometry. Anal Chem 79, 2451–2462 (2007)

    CAS  Article  Google Scholar 

  6. 6.

    Brock, A., Rodriguez, N., Zare, R.N.: Hadamard transform time-of-flight mass spectrometry. Anal Chem 70, 3735–3741 (1998)

    CAS  Article  Google Scholar 

  7. 7.

    Hirschfeld, T.: Fellgett's advantage in UV-VIS multiplex spectroscopy. Appl Spectrosc 30, 68–69 (1976)

    Article  Google Scholar 

  8. 8.

    Kaneta, T., Yamaguchi, Y., Imasaka, T.: Hadamard transform capillary electrophoresis. Anal Chem 71, 5444–5446 (1999)

    CAS  Article  Google Scholar 

  9. 9.

    Clowers, B.H., Belov, M.E., Prior, D.C., Danielson, W.F., Ibrahim, Y., Smith, R.D.: Pseudorandom sequence modifications for ion mobility orthogonal time-of-flight mass spectrometry. Anal Chem 80, 2464–2473 (2008)

    CAS  Article  Google Scholar 

  10. 10.

    Tai, M.H., Harwit, M., Sloane, N.J.: Errors in hadamard spectroscopy or imaging caused by imperfect masks. Appl Opt 14, 2678–2684 (1975)

    CAS  Article  Google Scholar 

  11. 11.

    Belov, M.E., Clowers, B.H., Prior, D.C., Danielson III, W.F., Liyu, A.V., Petritis, B.O., Smith, R.D.: Dynamically multiplexed ion mobility time-of-flight mass spectrometry. Anal Chem 80, 5873–5883 (2008)

    CAS  Article  Google Scholar 

  12. 12.

    Clowers, B.H., Siems, W.F., Hill, H.H., Massick, S.M.: Hadamard transform ion mobility spectrometry. Anal Chem 78, 44–51 (2006)

    CAS  Article  Google Scholar 

  13. 13.

    Eiceman, G., Stone, J.: Peer reviewed: ion mobility spectrometers in national defense. Anal Chem 76, 390 A–397 A (2004)

    CAS  Google Scholar 

  14. 14.

    Ibrahim, Y., Belov, M.E., Tolmachev, A.V., Prior, D.C., Smith, R.D.: Ion funnel trap interface for orthogonal time-of-flight mass spectrometry. Anal Chem 79, 7845–7852 (2007)

    CAS  Article  Google Scholar 

  15. 15.

    Szumlas, A.W., Ray, S.J., Hieftje, G.M.: Hadamard transform ion mobility spectrometry. Anal Chem 78, 4474–4481 (2006)

    CAS  Article  Google Scholar 

  16. 16.

    Kwasnik, M., Caramore, J., Fernández, F.M.: Digitally-multiplexed nanoelectrospray ionization atmospheric pressure drift tube ion mobility spectrometry. Anal Chem 81, 1587–1594 (2009)

    CAS  Article  Google Scholar 

  17. 17.

    Gao, X., Wood, T.D.: Sources of negative peaks in hadamard transform/fourier transform mass spectrometry/mass spectrometry. Rapid Commun Mass Spectrom 10, 1997–2001 (1996)

    CAS  Article  Google Scholar 

  18. 18.

    Zeppenfeld, P., Krzyzowski, M., Romainczyk, C., David, R.: On the origin of spurious peaks in pseudorandom time‐of‐flight analysis. Rev Sci Instrum 64, 1520–1523 (1993)

    CAS  Article  Google Scholar 

  19. 19.

    Fernández, F.M., Vadillo, J.M., Engelke, F., Kimmel, J.R., Zare, R.N., Rodriguez, N., Wetterhall, M., Markides, K.: Effect of sequence length, sequence frequency, and data acquisition rate on the performance of a hadamard transform time-of-flight mass spectrometer. J Am Soc Mass Spectrom 12, 1302–1311 (2001)

    Article  Google Scholar 

  20. 20.

    Kimmel, J.R., Yoon, O.K., Zuleta, I.A., Trapp, O., Zare, R.N.: Peak height precision in hadamard transform time-of-flight mass spectra. J Am Soc Mass Spectrom 16, 1117–1130 (2005)

    CAS  Article  Google Scholar 

  21. 21.

    Kimmel, J.R., Fernández, F.M., Zare, R.N.: Effects of modulation defects on hadamard transform time-of-flight mass spectrometry (HT-TOFMS). J Am Soc Mass Spectrom 14, 278–286 (2003)

    CAS  Article  Google Scholar 

  22. 22.

    Clowers, B.H., Ibrahim, Y.M., Prior, D.C., Danielson, W.F., Belov, M.E., Smith, R.D.: Enhanced ion utilization efficiency using an electrodynamic ion funnel trap as an injection mechanism for ion mobility spectrometry. Anal Chem 80, 612–623 (2008)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank Richard Zare, Craig Aspinwall, Facundo Fernandez, and Ignacio Zuleta for valuable correspondence and Hadamard transformed data utilizing a large number of bits. S.A.P. was sponsored by the US Department of Energy Science Undergraduate Laboratory Internships (SULI) program. S.H.P. acknowledges funding from a US Department of Energy Early Career award. The development of the IMS-MS platform was provided through the National Institute of Health General Medical Sciences Proteomic Center at PNNL (2 P41 GM 103493-11), and other portions of this research were supported by grants from the National Institute of General Medical Sciences (8 P41 GM103493-10 and R21 GM103497), National Cancer Institute (R21-CA12619-01, U24-CA-160019-01, and Interagency Agreement Y01-CN-05013-29), National Institute of Environmental Health Sciences of the National Institutes of Health (R01ES022190), the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory and by the US Department of Energy Office of Biological and Environmental Research Genome Sciences Program under the Pan-omics project. Work was performed in the Environmental Molecular Science Laboratory, a US Department of Energy (DOE) national scientific user facility at Pacific Northwest National Laboratory (PNNL) in Richland, WA. Battelle operates PNNL for the DOE under contract DE-AC05-76RLO01830.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Samuel H. Payne.

Additional information

Spencer A. Prost and Kevin L. Crowell contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 38 kb)

ESM 2

(XLSX 10 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prost, S.A., Crowell, K.L., Baker, E.S. et al. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements. J. Am. Soc. Mass Spectrom. 25, 2020–2027 (2014). https://doi.org/10.1007/s13361-014-0895-y

Download citation

Key words

  • Ion mobility
  • Computational proteomics
  • Hadamard transform
  • Bioinformatics
  • Sensitivity
  • Data analysis